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ABSTRACT Electrical Impedance Tomography (EIT) has emerged as a valuable medical imaging modality,
which visualizes the conductivity distribution of a subject by performing multi-electrode impedance
measurements. EIT finds applications in monitoring lung and cardiac function, brain imaging and the
detection of malignant tissues. Its mobility, outstanding temporal resolution and the absence of ionizing
radiation make it particularly suitable for repetitive real-time monitoring and diagnostics, especially in
radiation-sensitive populations, such as neonates. This paper presents a methodological review of EIT image
reconstruction approaches spanning from traditional linear regularization and back-projection to more recent
techniques, including deep learning, sparse Bayesian learning and non-linear shape-driven reconstruction.
Linear and non-linear reconstruction approaches are distinguished, as well as time, frequency difference
and absolute reconstruction ones. The exposition includes a concise elaboration of the methodologies’
mathematical foundations and algorithmic deployment, with particular attention to recent advancements. For
each approach, an assessment of its merits and drawbacks is given, providing implementation considerations,
imaging performance and relevant applications.

INDEX TERMS Electrical impedance tomography, inverse problem, regularization, Ill-posedness,
Bayesianism, deep learning.

I. INTRODUCTION
Electrical Impedance Tomography (EIT) performs imaging
of the conductivity distribution within a two-dimensional
slice or three-dimensional volume of a subject by injecting
a periodic current signal through an array of surface-
attached electrodes [1]. During this process, the differential
electrode potentials are measured and processed to obtain a
measurement vector, which serves as the input data for image
reconstruction. EIT appears compelling advantages over X-
Ray, CT andMRI, since it is characterized by lack of ionizing
radiation, mobility, relatively low hardware equipment cost
and high temporal resolution. The latter provides EIT with
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the potential for use in real-time medical applications,
such as lung and cardiac function monitoring and brain
imaging, to observe vital signs and conditions such as tidal
volume [2], acute respiratory distress syndrome (ARDS)
[3] and brain ischemic hemorrhage [4], [5]. Additionally,
EIT has proven useful for malignant tissues’ detection
and classification. Some representative examples can be
found in prostate imaging and breast tomography [6], [7],
[8]. Furthermore, EIT finds space in a variety of other
medical or industrial applications, such as gastric-emptying
monitoring [9], bladder monitoring [10] and non-destructive
evaluation [11].

However, EIT’s poor spatial resolution as well as sen-
sitivity to noise and modeling errors remain two major
drawbacks that hinder its widespread adoption in the field
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of medical diagnostics. In contrast to CT and MRI, where
ionizing X-rays and strong EM fields respectively propagate
as waves within the subject under test (SUT), in EIT, the
current diffuses between the stimulating electrode pairs. This
results in a voltage distribution that adheres to a Laplace
equation. In qualitative terms, this means reduced sensitivity
of the boundary (electrode) potentials to any contuctivity
perturbations, especially when the latter take effect far from
the current stimulation electrodes. The above soft field effect
leads to an ill-conditioned inverse problem of recovering the
conductivity distribution from boundary potential data.

Since the introduction of the first experimental EIT
system in 1978 [12], the corresponding inverse problem
has remained an active research field and many approaches
have been proposed and evaluated to address it. The
earlier EIT systems used the Sheffield (adjacent) current
stimulation protocol to inject the current through a rotating
single pair of neighboring electrodes, while image recon-
struction was achieved using the linear back-projection
algorithm [13]. During the early 90s, inversion techniques
that incorporate prior knowledge regarding the conductivity
distribution’s behavior, based on Tikhonov regularization (l2-
norm prior) [14], were introduced and widely adopted [15],
[16], [17], [18]. Initially, such techniques were applied
as single-step (direct) conductivity estimations, assuming
minor conductivity changes and a linear relationship between
the conductivity distribution and the boundary electrode
voltages. With the evolution of computer hardware, iterative
Gauss-Newton-based approaches and generalized Tikhonov
regularization [17], [19], [20] that could tackle the non-linear
nature of the inverse problem began to gain popularity. Three-
dimensional imaging [21], [22] and the l1-norm prior total
variation regularization [23], [24], [25], which assumes steep
spatial changes in conductivity, were also adopted in various
EIT applications.

However, the linear methods still remained popular in
time-difference EIT imaging, where conductivity changes
between different states (e.g. inspiration and expiration ends
during breathing) are reconstructed with sufficient temporal
resolution and can be assumed small enough to approximate
a linear behavior. At the same time, the D-Bar reconstruction
method, based on a non-linear inverse scattering Fourier
transform was developed along with the trigonometrical
current injection protocol [26], [27], [28], [29]. The D-
Bar applies low-pass filtering which serves as regularization
to smoothen anomalies in conductivity changes, while
the trigonometric pattern was proven to be very efficient
for providing valuable information for the conductivity
distribution within a smaller number of measurements [30].
Finally, the Graz consensus reconstruction algorithm for
EIT (GREIT) was developed in 2009 as an alternative
single-step approach that utilizes a figure-of-merit (FoM)
framework for simultaneous optimization of both parameters
and performance [31].

From the mid-2010s, more advanced, at most non-linear,
EIT inverse problem approaches were proposed to enhance

the produced images. These included the alternating direction
method of multiplier (ADMM) [32] and the Bregman-
distance [33], [34], [35] techniques that were incorporated
in total variation regularization and hybrid (l2-norm com-
bined with l1-norm) regularization. Although the techniques
mentioned above improved the spatial resolution of EIT
images, their applicability to real medical imaging is still
limited by a few important obstacles. The large number
of hyperparameters, combined with the lack of systematic
methods for their proper selection, make the optimiza-
tion process difficult and time-consuming. Moreover, the
requirement of numerical re-computations of electric fields
significantly slows down the reconstruction process, adding
to the challenges. Addressing them is crucial for the practical
application of EIT in medical imaging, especially in real-time
monitoring scenarios.

In the late 2010s, a novel category of EIT reconstruction
algorithms emerged, referred to as shape-driven meth-
ods [36], [37], [38]. These algorithms offer an individual
approach to tackle the ill-posed nature of the inverse
problem by focusing on approximating the exact shapes of
conductivity inclusions rather than estimating the subject’s
conductivity distribution. To achieve this, dimensionality
reduction techniques are used to deal with complex geome-
tries commonly encountered in medical applications [37],
[39]. While these methods are considered effective, their
implementation still requires careful consideration of hyper-
parameters and conductivities’ initial values and convergence
can be slow due to the considerable number of parameters
involved. Additionally, to the shape-driven methods, meta-
heuristic population-based approaches were also applied in
EIT, such as the genetic algorithm [40], [41] and the particle
swarm optimization (PSO) [42].
To address the issue of proper hyperparameter selection

as well as the robustness of EIT images to noise, sparse
Bayesian learning (SBL) has been recently applied in
EIT [43], [44], [45], [46]. SBL is an unsupervised machine
learning technique, where a prior probability distribution
of the subject’s conductivity map and a likelihood function
describing the probability of obtaining the measured voltage
data given the conductivity map are defined. Through a
self-trained hyperparameter optimization process, the above
probability distributions are used to estimate the posterior
probability distribution of the conductivity map, which is
assumed to be sparse. SBL approaches have demonstrated
superior spatial performance at the cost of extremely high
complexity, especially in fine discretization domains and 3D
structures [44].

Supervised neural networks (NNs) have been widely used
in recent EIT image reconstruction research, leveraging
their ability to handle the problem’s non-linearity and
ill-conditioning. By training NNs on large sets of EIT
data, they can learn the underlying relationship between
information regarding the boundary voltage measurements,
the stimulation pattern, as well as the electrode-subject
geometry and the conductivity distribution. The first popular
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NN-based learning applications in EIT employed simple
artificial NNs (ANNs) that were trained to predict the
conductivitymap directly through themeasurement data [47],
[48], [49], [50], [51], [52], [53], [54], [55], [56]. However,
this approach suffers from training divergence issues [57]
and necessitates extensive datasets, limiting its ability to
generalize to different setups. To improve these issues,
as well as to enhance existing imaging methods performance,
deep learning (DL) schemes were adopted. In 2018, the
deep-D-Bar was introduced as a U-net based image post-
processing technique to significantly improve the quality of
D-Bar EIT reconstructed images in terms of both accuracy
and robustness [58]. A deep-D-Bar modification is the
domain-independent Betrami-net, exploited in absolute EIT
imaging [59]. Furthermore, iterative model-based techniques
such as the dominant current deep learning scheme (DC-
DLS) [60], induced-current learning method (ICLM) [61],
NN approach for multiphase-flow shape reconstruction [62]
and a multiple measurement vector based NN (MMV-net)
[63] for multifrequency EIT (Mf-EIT), were used to combine
the EIT inverse problem’s physical background with the
capabilities of DL.More recently, graphNNswere introduced
in the field of inverse scattering problems [64], including cell
culture imaging mf-EIT [63], to bridge the divide between
the finite-element nature of the EIT model structures and
the necessity of pixelized images for CNNs. Furthermore,
a novel category of DL schemes applied in EIT is based on the
deep image prior [65], [66], where the images are produced
through the internal NN architecture without the usage of
training data.

The brief historical overview presented above highlights
the significant developments that have taken place in
addressing the EIT inverse problem. A number of approaches
have been developed, many of which remain popular in
medical applications today. The literature contains several
reviews that discuss past progress in traditional EIT imaging
techniques [67], [68], [69] and those based on ML [56], [70],
[71], [72], [73], [74], [75]. This paper presents a unified
and comprehensive overview of the inverse problem solution
approaches for EIT, spanning from conventional linear to
the latest DL trends. Its objective is to offer a clear and
intuitive explanation of the essential concepts underlying
the various approaches, highlighting their evolution and
continuity, in order to facilitate understanding and bridge the
gap between traditional and contemporary ones. Emphasis
is given to the latest advancements and their associated
applications. In addition, to provide a holistic understanding
of EIT imaging, a brief explanatory review of the current
stimulation patterns, the absolute and difference EIT mea-
surement methods and the forward problem is also included.

In summary, this paper focuses on the following aspects:

• The paper provides an extensive overview of image
reconstruction methods used in EIT. It spans from
conventional regularization techniques to cutting-edge
DL schemes.

• The approaches are systematically categorized based on
their mathematical and theoretical foundations.

• The core principles within each category are explained
in detail, highlighting their respective advantages and
challenges.

• Recent advancements, based on the aforementioned
principles are critically examined, highlighting their
specific contributions in addressing the identified chal-
lenges and capturing the state-of-the-art methodologies.

• The paper engages in comparative discussions both
within and between different categories of approaches,
focusing on the evolutionary aspects of the methodolo-
gies.

• The presented approaches are selected and structured
to comprehensively address the domain of EIT image
reconstruction research. Their inclusion is based on their
widespread applicability, popularity and their significant
contributions to current imaging trends.

The rest of this paper is organized as follows: In Section II,
the basic principle of the EIT problem is explained, including
static and difference EIT, along with the forward problem
formulation. Section III reviews the conventional inverse
problem approaches, encompassing generalized Tikhonov
regularization, total variation, GREIT, D-Bar and subspace
optimization. Additionally, Section IV elucidates and revises
the shape EIT reconstruction techniques. In Section V, the
application of population-based algorithms for EIT image
reconstruction is presented, while Section VI provides a
brief description of the concept and application of the
sparse Bayesian learning method. Moreover, in Section VII,
both earlier and recent DL approaches applied in EIT are
presented, compared and discussed. An overall discussion
regarding the feasibility and limitations of the reconstruction
approaches on contemporary application trends is written in
Section VIII. Finally, Section IX concludes this paper.

II. EIT PRINCIPLE
EIT is a current diffusion process, where one or more
electrode pairs, attached to the subject’s surface, are utilized
to inject a single or multi-frequency current into the subject’s
volume. This stimulation results in an electric field, in which
the potential obeys the Laplace equation:

∇
(
σ (rrr)∇u(rrr)

)
= 0, rrr ∈ � (1)

where � denotes the SUT 2D or 3D domain, u(rrr) is the
potential and σ (rrr) is the relative conductivity distribution.
Assuming the popular complete electrode model (CEM),
where both electrode dimensions, contact impedances and
shunting effect are considered, the corresponding boundary
conditions are described as follows:

u(rrr) + zℓσ (rrr)
∂u(rrr)
∂nnn

= Uℓ, rrr ∈ eℓ, ℓ = 1, . . . ,N (2)∫
eℓ
σ (rrr)

∂u(rrr)
∂n

dS = Iℓ, ℓ = 1, . . . ,N (3)
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σ (rrr)
∂u(rrr)
∂nnn

= 0, rrr ∈ ∂�\

N⋃
ℓ=1

eℓ. (4)

In the expressions above, zℓ denotes the ℓ-th electrode’s
contact impedance, Uℓ the ℓ-th electrode’s potential, eℓ the
ℓ-th electrode’s domain, Iℓ the current amplitude sourced or
sunk from the ℓ-th electrode and n the unity outward-pointing
vector. Other EIT electrode model definitions include the
point electrode model (PEM) [76], the continuum or gap
electrode model, the discretization effect and the perfectly
conducting (zero-impedance) models [77].
The EIT reconstruction problem entails the estima-

tion of the conductivity distribution σ (rrr) based on the
domain’s geometry, the boundary electrodes’ voltages Uℓ
and the electrodes’ currents Iℓ (inverse problem). However,
an essential step to solve the inverse problem involves
predicting the potential distribution u(rrr), given an initial
(usually homogeneous) guess of σ (rrr) (forward problem).
The EIT forward problem can be solved through (1)-(4),
typically using the finite element method (FEM) (see also
subsection II-E). Other numerical methods employed for
estimating the potential distribution include the method-of-
moments (MoM) [78], [79] and the boundary element method
(BEM) [80]. Thesemethods are frequently combinedwith the
FEM to obtain more accurate solutions, particularly in cases
with complex geometries that exhibit sharp edges.

A. CURRENT/VOLTAGE PATTERNS
To obtain an EIT voltage measurement set, a predefined
current injection pattern (protocol) is applied to a sequence
of electrode pairs while voltage measurements are recorded
from the remaining electrodes in the setup. The process is
repeated for a specific number of current electrode pairs,
resulting in a large set of tetrapolar impedancemeasurements.
Tetrapolar measurements are preferred over bipolar ones,
as the latter often introduce significant measurement errors
due to the electrode contact impedances and the shunt
effect [81], [82], [83], [84], [85]. The EIT current stimulation
protocols can be classified into two main categories: A)
The pairwise patterns and B) The trigonometrical ‘‘optimal’’
current patterns. In pairwise patterns, the current is usually
injected from a single electrode pair at a time, while in
trigonometric patterns, all the electrodes are stimulated
simultaneously [86].
The most commonly used current stimulation pattern is

the pairwise adjacent (or Sheffield) one, where the current
is injected through two neighboring electrodes, while the
voltages are measured between the rest of the neighboring
electrode pairs [87]. The adjacent protocol remains popular
in medical applications since it can be applied using
less-complex hardware EIT systems, can better tolerate mod-
eling errors and provides the largest number of independent
measurements (N ·(N−3)/2 for anN -electrode system) [88].
However, when the adjacent current stimulation is applied,
most of the voltage measurements have significantly low
sensitivity to conductivity perturbations that are far from the

current electrodes [87], [89], [90]. This reduced sensitivity
exacerbates the soft-field effect and worsens the conditioning
of the reconstruction problem. In general, the pairwise current
patterns are also called skip-m, where m is the number of
electrodes between the current source and the current sink
electrode [91]. For example, the adjacent pattern is also
considered as skip-0. The skip-n notation is also used for
the voltage measurement patterns, where n is the number of
electrodes between the differential measurement electrodes.
Voltage measurement patterns with low or zero skip (such
as adjacent) require less complex hardware, but they may
suffer from lower signal-to-noise ratio (SNR) due to their
low voltage amplitudes. On the other hand, high skip voltage
patterns may have higher SNR levels, but they may lead to
mirroring artifacts in the reconstructed images, in addition
to requiring more complex measurement systems. Fig. 1
presents an explanatory schematic of the pairwise current and
voltage patterns.

The trigonometric current patterns apply current to all the
electrodes simultaneously to create a more evenly distributed
current density and minimize the soft field effect [30],
[87], [89]. Such patterns also provide a high number of
independent measurements and are usually used along with
the D-Bar reconstruction algorithm (see subsection III-H).
Nevertheless, they require multiple well-matched current
sources leading to high hardware complexity. In any case,
the choice of the current and voltage stimulation patterns
depends on the specific application and the trade-off between
hardware complexity, SNR and image quality.

B. ABSOLUTE EIT
In absolute (static) EIT (a-EIT), the image is reconstructed
using a single measurement vector of the following form:

VVV = [V 1 V 2 . . . VNh]T ∈ RNh×1 (5)

where h is the number of differential voltage measurements
collected per current electrode stimulation pair. For the
current skip-m, voltage skip-n (pairwise) patterns it is h =

N − 3 when m = n, or h = N − 4 otherwise. At the
same time, we define the corresponding computed boundary
voltages that are computed through the forward problem:

UUU = [U1 U2 . . . UNh]T ∈ RNh×1 (6)

The purpose is to obtain an estimation of the SUT conduc-
tivity distribution by minimizing the norm between VVV and
UUU (fidelity term). Although a-EIT is expected to derive real
conductivity values (in (S/m)), in practice, it is very sensitive
to modeling errors, such as inaccuracies in geometry and the
electrodes’ contact impedances, often resulting in misleading
images. Therefore, it is hardly used in medical applications,
especially if motion artifacts are present.

C. TIME-DIFFERENCE EIT
In time-difference EIT (td-EIT), the measurement vectors
obtained from two or more consecutive states are utilized to
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FIGURE 1. Brief schematic of a current skip-m, voltage skip-n pairwise
pattern. i) Current stimulation at the 1st and the (m + 2)-th electrodes,
voltage measurement between the k-th and (k + n + 2)-th electrodes. ii)
Same current stimulation electrodes as in i), voltage measurement
between the (k + 1)-th and (k + n + 3)-th electrodes. iii) Current
stimulation at the 2nd and the (m + 3)-th electrodes, voltage
measurement between the k-th and (k + n + 2)-th electrodes. iv) Same
current stimulation electrodes as in iii), voltage measurement between
the (k + 1)-th and (k + n + 3)-th electrodes.

reconstruct an image that demonstrates changes in conduc-
tivity distribution over time. By subtracting the measurement
frames VVV (t1) ∈ RNh×1 and VVV (t2) ∈ RNh×1 obtained from
two consecutive time points t1 and t2 (t2 > t1), td-EIT
provides a differential measurement vector δVδVδV = VVV (t2) −

VVV (t1) that enhances the sensitivity of the EIT system to
conductivity changes. Unlike a-EIT, td-EIT can suppress
a large percentage of modeling errors and tolerate minor
inaccuracies in the model. Therefore, td-EIT has proven
particularly useful in applications such as lung, cardiac,
or gastric monitoring, where changes in conductivity are
important for estimating critical biomarkers like tidal volume.
However, td-EIT is not effective in applications where the
conductivity distribution remains temporally constant, such
as tumor detection, as it requires a baseline (or reference
frame) that is often assumed to be homogeneous [92], [93].
Additionally, td-EIT assumes that no motion or changes in
the shape or conductivity of the subject under test (SUT)
occur during each particular measurement to acquire a frame.
Hence, it necessitates the use of a relatively fast EIT hardware
system with a high frame rate that matches the application
requirements.

D. FREQUENCY-DIFFERENCE EIT
Considering the case where the current excitation is sinu-
soidal of frequency f , the measured voltage is a function

of f . In frequency-difference EIT (fd-EIT), two sets of
measurements are obtained for two different excitation
current frequencies [94], [95]. In particular, the measurement
vector is estimated as follows:

δVδVδV = VVV f2 − αVVV f1 ∈ RNh×1 (7)

where VVV f1 ∈ RNh×1 and VVV f2 ∈ RNh×1 are the measurement
vectors corresponding to current frequencies f1 and f2 and
α > 0 is a weight factor estimated as follows:

α =
VVV f1TVVV f2∥∥VVV f1

∥∥
2

(8)

Fd-EIT is popular for its ability to detect minor changes
in conductivity, even in the presence of large baseline
conductivity variations. It is commonly used in applications
where little to no impedance changes occur, such as in the
detection of tumors and stroke [92], [93], taking advantage
of the fact that each tissue type is characterized by its own
relative impedance frequency spectrum [95]. However, fd-
EIT also has some limitations since it requires complex
hardware systems capable of generating broadband current
signals and measuring the resulting voltage signals with high
accuracy. Additionally, it can be sensitive to noise and other
sources of interference, which can result in image artifacts.

In the following sections, for the sake of simplicity, we will
use the notationsVVV ,UUU and σ when referring to either absolute
or difference EIT.

E. FORWARD PROBLEM
The EIT forward problem involves calculating the voltage
and current distribution within � for every stimulating
electrode pair, assuming a known conductivity distribution.
Although there are a few alternative numerical methods used
in EIT, such as BEM and MoM, in this section, we will
focus on a brief description of the popular FEM-based
formulation. For more information about the applications of
BEM and MoM in EIT, we refer the reader to [96], [97],
and [98]. The FEM, widely applied in the analysis of solid
and fluid dynamics and electromagnetic fields, discretizes the
SUT model domain (�) into a number of Ne elements and
Nu nodes (vertices). In 2D and 3D EIT, usually triangular
and tetrahedral elements are utilized, respectively, although
higher-order shapes can also be used. Both the Galerkin
and the Riesz approaches can be used in FEM. The former
involves constructing a weak formulation of the problem,
which is then discretized using a finite element basis [99],
[100]. The Riesz method, on the other hand, involves using a
Riesz basis, constructed using a set of orthogonal functions
that satisfy certain mathematical properties. It is capable
of solving the forward problem more efficiently than the
Galerkin method [101]. However, the Galerkin method,
whose application in EIT is described below, is more popular
due to its easier implementation and its adaptability to
complex geometries.
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Assuming a weak solution uh(rrr) of the forward problem
and expanding it at an orthonormal basis we define:

uh(rrr) = 6
Nu
i=1uiφi(rrr) (9)

where φi : � → [0, 1] describes polynomial basis
functions (usually piecewise linear [102], [103]) that satisfy
the following condition:

φi(rrr) =

{
1, if rrr is the i-th vertex
0, if rrr is any other vertex

}
.

The conductivity (or admittance) weak solution is of the form:

σh(rrr) = 6
Ne
e=1σeψe(rrr) (10)

while it is usually described by a piecewise constant basis
function ψe : � → {0, 1} on each element e:

ψe(r) =

{
1, if r in e-th element
0, if r not in e-th element

}
.

In the following expressions, the notations φi and ψe instead
of φi(rrr) and ψe(rrr) are adopted for convenience.

Calderon has shown that for small σ deviations (1) can be
written in the following billinear integral form [103], [104]:∫ ∫

�

σ (rrr)∇u(rrr) · ∇v(rrr)dA

=

∮
∂�

(
u(rrr)σ (rrr)

∂v(rrr)
∂nnn

)
dS, in �, (11)

where v(rrr) is a potential test function. By utilizing (9), (10),
(11) and the Green’s second identity along with the CEM
boundary equations (2)-(4), the following equation for each
particular element �e is derived (2D case) [105]:∫ ∫

�e

σe

(
uj
∂φi

∂x
∂φj

∂x
+ uj

∂φi

∂y
∂φj

∂y

)
dA

=

∮
∂�e

φi
1
zl

(
ujφj − Ul

)
dS. (12)

Likewise for the 3D case. For each element domain
�e having ne vertices, the following local matrices are
structured [105]:

Am(i, j)=
∫ ∫

�e

σe

(
∂φi

∂x
∂φj

∂x
+
∂φi

∂y
∂φj

∂y

)
dA, AAAm ∈ Rne×ne ,

(13)

Az(i, j) =

∮
∂�e

1
zℓ
φiφjdS, AAAz ∈ Rne×ne , (14)

and

Au(i, j) = −

∮
∂�e

1
zℓ
φidS, AAAu ∈ Rne×ne . (15)

The following global matrix that demonstrates the inverse
of each electrode’s contact impedance per the electrode’s
surface is also written:

AAAD = diag
([

|Eℓ|z
−1
ℓ

]N
ℓ=1

)
, AAAD ∈ RN×N , (16)

where |Eℓ| denotes ℓ-th electrode’s surface area. By assem-
bling the vertices and elements into a global admittance
matrix form and considering the current injection and voltage
measurement pattern used, a linear system of equations is
formulated [105]:[

AAAM +AAAZ AAAV
AAA∗
V AAAD

] [
uuu
UUU

]
=

[
0
III

]
, (17)

where AAAM ∈ RNu×Nu , AAAZ ∈ RNu×Nu and AAAV ∈ RNu×N are
the globally assembled matrices from the corresponding local
AAAm, AAAz and AAAu ones. In addition, uuu = [ui]

Nu
i=1 denotes the

nodes’ potentials,UUU = [Uℓ]Nℓ=1 the electrodes’ potentials and
III ∈ RN×1 denotes the amount of current sourced or sunk per
electrode. The (Nu+N )×(Nu+N ) system of equations in (17)
is usually solved using the Cholesky or the conjugate-gradient
methods [106].

A number of research works have demonstrated that σ can
be uniquely determined by the knowledge of the Dirichlet-
to-Neumann (DN) map on a bounded domain [103], [107],
[108]. The relation between the conductivity σ and the
boundary voltages UUU is non-linear. However, for relatively
small conductivity changes δσ (rrr) around a reference relative
conductivity value σo, the following weak integral form can
be used to estimate the differential voltage between two
electrodes:

δUd,m = −

∫ ∫
�

δσ (rrr)∇ru(Id , rrr) · ∇ru(Im, rrr)dA (18)

where u(Id , rrr) and u(Im, rrr) are the electric fields due to
the d-th current stimulation (lead, d ∈ {1, 2, . . .N }) and
the m-th voltage measurement electrode pairs respectively
(m ∈ {1, 2, . . . , h}), that can be estimated using FEM [105].
The following linear approximation can be derived:

δUδUδU =
∂δUδUδU
∂δσ

∣∣∣
σo

δσ +O(∥δσ∥
2) ≃ JJJδσ (19)

where JJJ ∈ RNh×Ne denotes the Jacobian matrix, calculated as
follows:

J id,m =
∂δUd,m
∂δσi

= −

∫ ∫
�i

∇ru(Id , rrr) · ∇ru(Im, rrr)dA

(20)

for the i-th element (column) and the current-voltage pattern
indices d,m (row). The Jacobian matrix JJJ reflects the
sensitivity of the electrode voltages to perturbations in the
conductivity of each element and is typically computed using
the adjoint method [109]. Due to the ill-conditioned nature
of the inverse problem, JJJ can exhibit singular behaviour,
which poses significant challenges for accurately estimating
the conductivity distribution.

Fig. 2 illustrates how the sensitivity of electrode voltages
to conductivity perturbations decreases as the perturbations
move away from the domain boundary. The finite element
simulations were carried out using the EIDORS library
in MATLAB [110]. Specifically, a 2D circular domain
with a unity radius and 16 electrodes was considered.
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The domain was discretized into Nu = 5327 nodes and
Ne = 10262 triangular elements. A 1mA current was
applied, using the adjacent current and voltage pattern to
two inhomogeneous cases: one with a circular perturbation
of radius 0.2 that presented a 10% increase in conductivity
relative to the homogeneous background and was centered at
(0.1, 0.6) and another appearing the same change centered at
(0,−0.1). As shown in Fig. 2, the voltage changes resulting
from the second case were at least 10 times lower than
those from the first case, demonstrating that detecting interior
conductivity changes is challenging and requires high SNR
systems.

Throughout the rest of this paper, N denotes the number
of electrodes as before, h denotes the number of voltage
measurements per current injection pair, Ne is the number
of FEM elements, d stands for current stimulation, m for
the number of voltage measurements and J symbolizes the
Jacobian matrix, unless otherwise indicated.

III. CLASSICAL APPROACHES
This section performs an explanatory review of pri-
mary EIT image reconstruction approaches, beginning
from the back-projection method and proceeding with the
regularization-based, the GREIT, the D-Bar and the subspace
optimization methods. In each approach, core theoretical
concepts are elucidated, delineating implementation steps
and analyzing inherent advantages and disadvantages. These
approaches were selected based on their broad applicability,
popularity and their foundational role in various methods
and recent research modifications. In addition, variants and
recent advancements are discussed, providing insights into
their contributions and areas of application. Prior to this
presentation, the issue of inverse crime is explained, while
a brief review of the hyperparameter selection methods is
performed at the end of this section.

A. INVERSE CRIME
In EIT, it is a common practice to evaluate the performance
of a reconstruction algorithm using simulated data prior
to testing it on real data. The simulated electrode voltage
data is usually generated numerically on a 2D or 3D
structural model, employing the FEM (see the previous
section). Gaussian noise should also be added to the simulated
measurement data to assess the algorithm’s robustness. The
image reconstruction is then performed using an inverse
reconstruction model structure based on the algorithm tested.

However, using the same discretization for both the
simulation and the reconstruction model can lead to inverse
crime, resulting in an inaccurate representation of the inverse
model’s actual performance when applied to real data [68].
This discrepancy arises due to the differences in the actual
system being measured, such as noise and model errors,
which were not present in the simulated data. To avoid the
inverse crime, it is crucial to reconstruct the image using
an independent grid from the simulation model. Typically,
a fine grid is used in the simulation model to obtain accurate

measurement estimates, whereas a coarse grid is utilized in
the inverse model to ensure computational efficiency.

B. BACK-PROJECTION
The back-projection (BP) algorithm is a fundamental image
reconstruction method in X-Ray and CT imaging. In the
earlier EIT research steps, it was applied as linear BP
(LBP) [111]. The main approach is described by the
determination of the voltage equipotential lines sensing areas
and measurement data projection onto these areas’ pixels.
Each element’s or pixel’s conductivity change1σ (j) = σm−

σo, j ∈ {1, 2, . . .Ne} is then estimated by overlaying the
projected data:

1σ (j) =
1
N

N∑
i=1

Um(i, j) − Uo(i, j)
Uo(i, j)

(21)

for a number of N current excitation electrode pairs. In the
expression above, Uo and Um refer to the projected voltage
data before and after the change in conductivity. This
approach is relatively simple; however, it exhibits limited
spatial resolution, image blurring and does not take into
account any non-linear effects. Some modified versions of
the original LBP have appeared more recently [112], [113].
Finally, an iterative version of the BP algorithm for EIT has
also been presented in [114].

C. TRUNCATED SINGULAR VALUE DECOMPOSITION
In truncated singular value decomposition (TSVD), singular
value decomposition (SVD) is performed on the Jacobian
matrix JJJ :

JJJ = UUUTS6TSVVV ∗
TS , (22)

where UUUTS ∈ RNh×Nh and VVV TS ∈ RNe×Ne are orthogonal
matrices and6TS ∈ RNh×Ne is a diagonal matrix that contains
the singular values of the Jacobian matrix. Then, the singular
values below a selected threshold L are truncated to zero, with
the conductivity distribution estimated as follows:

σ∗ = VVV TS6̃TSUUU∗
TS , (23)

where 6̃TS = diag(s̃i) ∈ RNh×Ne , with

s̃i =

{
1/si, if si ≥ L
0, otherwise

}
, (24)

where si denotes the i-th singular value ofJJJ . This actually acts
as regularization, since by an appropriate threshold selection,
TSVD can effectively suppress noise and other artefacts in
the reconstructed images [115], [116]. However, it lacks
of sufficient spatial resolution and robustness to modelling
errors.

D. TIKHONOV AND L2-NORM REGULARIZATION
Regularization is a widespread approach to dealing with
ill-posed inverse problems. The EIT reconstruction problem
can be approached as theminimization task of a cost function,
which includes a least-squares (fidelity) term between the
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FIGURE 2. The soft field effect in a 2D circular EIT setup. i) With a conductive inclusion close to boundary. ii) With a conductive
inclusion close to the center. iii) Homogeneous case voltage distribution when current is stimulated from the 1st and the 2nd
electrodes. iv) Percentage of changes in voltage distribution due to the boundary inclusion. v) Percentage of changes in voltage
distribution due to the central inclusion. vi) Changes in differential adjacent voltage measurements due to the conductive inclusions.

measurements VVV and the numerically estimated boundary
voltages UUU (σ ) and a regularization term R(σ ) ∈ R+ that
prevents overfitting and offers stability to the solution:

F(σ ) = ∥UUU (σ ) −VVV∥
2
WWW + λ2R(σ ), (25)

σ∗ = argmin
σ∈RNe×1

{
F(σ )

}
. (26)

where we consider the boundary voltage vector UUU as a
function of σ , UUU : RNe×1

→ RNh×1. In addition, WWW ∈

RNh×Nh is the noise positive definite inverse covariance
matrix, ∥AAA∥

2
WWW = AAATWWWAAA is a weighted vector norm of any

vector AAA and λ > 0 is the regularization hyperparameter.
By selecting λ, it is possible to control the trade-off
between data fitting and regularization biasing. In practice,
the hyperparameter λ is often chosen heuristically, although
some techniques have been developed for its selection, such
as the L-curve and the cross-validation [117] (see also
subsection III-J). In standard Tikhonov regularization, the
corresponding term is written as:

R(σ ) = ∥σ∥
2
2 (27)

where ∥.∥2 denotes the Euclidean (l2) norm. The l2-
norm optimization problem (25)-(27) is also called ridge
regression. By using the linear approximation U(σ) ≃ Jσ

(see also II-E and (19)), a single-step solution can be obtained
as:

σ∗ = σo +

(
JJJTWWWJJJ + λ2III

)−1
JJJTWWWVVV (28)

where III ∈ RNe×Ne is the identity matrix. In the case of
a-EIT, a homogeneous background conductivity estimation
σo needs to be added. From a statistical point of view, the
term (27) can be interpreted as a prior distribution over σ . It is
also assumed that σ is drawn from a Gaussian distribution
with mean σo and an identity covariance matrix, while the
noise signal has zeromean and covariancematrixWWW−1. Then,
σ∗ is the maximum a posteriori (MAP) estimation of the
posterior distribution given the measured data VVV [16], [118].
In practise, Tikhonov regularization strengthens the diagonal
terms of JJJTJJJ to reduce its condition number.
In generalized Tikhonov regularization, (27) is replaced

by (29) where the positive definite matrixQQQ ∈ RNe×Ne , called
prior filter matrix, is employed to enhance the conductivity
distribution’s prior knowledge:

R(σ ) = ∥σ∥
2
QQQ . (29)

The most popular approaches include the NOSER priorQQQ =

diag(JJJTJJJ ) [15], the Laplace prior [17] and the Gaussian high
pass filter [16], [17]. The single-step solution is obtained in a
similar manner as in (28), where theQQQ matrix is used instead
of the identity matrix.

When large conductivity contrasts occur, an iterative
variant of Tikhonov regularization can be used to deal with
the problem’s non-linearity, based on the Gauss-Newton
algorithm. Each update is performed as follows [1], [119]:

σ κ+1
= σ κ + α

(
(JJJκ )TWWWJJJκ + λ2QQQ

)−1
·

47804 VOLUME 12, 2024



C. Dimas et al.: Advances in EIT Inverse Problem Solution Methods

(
(JJJκ )TWWW

(
VVV −UUU (σ κ )

)
+ λ2QQQ(σo − σ κ )

)
, (30)

where κ is the previous iteration step and α > 0 is a constant
estimated through line search for the proper update. It is
noted that in the conventional Gauss-Newton algorithm, the
hyperparameter value λ remains constant. Otherwise, λ can
be a decreasing function of index κ . If in addition, QQQ = III ,
iteration (30) becomes that of Levenberg-Marquardt [105],
[120].

Another popular l2-norm optimization variant is the
Landweber reconstruction [121], which is based on the
steepest descent algorithm [122]. The conventional iterative
Landweber update rule is:

σ κ+1
= σ κ + α1(JJJκ )T

(
VVV − JJJκσ κ

)
+ α2QQQTQQQσ κ , (31)

where α1 and α2 are hyperparameters corresponding to the
fidelity and the regularization term step respectively.

In td-EIT applications, the l2-norm regularization scheme
can be properly modified in order to be transformed to
a state-space model and solved recursively according to
an extensive Kalman-filter context. The first Kalman filter
implementation that tracks fast conductivity changes in
thoracic EIT was presented in [123]. Extended version of the
Kalman filter were later used in circular phantom experiments
in [124] and [125].

Although Tikhonov regularization has been around for
nearly three decades, it remains the most widely used
approach for EIT reconstruction due to its relative simplicity
and the availability of open-source libraries for imple-
mentation. Additionally, recent progress has been made in
developing variants of Tikhonov regularization. For example,
in [126], an adaptive hyperparameter selection approach
was introduced. In [127], the prior regularization filter was
modified to incorporate a priori knowledge of lung structure
for lung cancer monitoring. Furthermore, in [128], homotopic
mapping was adopted in an iterative Tikhonov regularization
scheme, along with a Krylov subspace-based projection
to improve both spatial and temporal resolution. Finally,
in [129], a direct Landweber approach is used for two-phase
flow electrical resistivity imaging in a phantom with acrylic
rods.

E. TOTAL VARIATION REGULARIZATION
The total variation (TV) regularization incorporates an l1-
norm regularization term into the optimization function (25).
In the fields of medical imaging and data science it is
also called fused lasso regression [130], [131]. TV allows
steep conductivity changes to be reconstructed without
the smoothing effect introduced by l2-norm priors. The
regularization term is written as follows:

R(σ ) =

Ned∑
i=1

√
∥LLL iσ∥

2
2 + β. (32)

where the matrix LLL ∈ RNed×Ne quantifies the relationship
between the domain’s Ned edges and the corresponding Ne

elements. LLL i denotes the i-th row of the matrix LLL and the
parameter β > 0 guarantees the term’s differentiability at
zero σ [24].
The TV optimization problem defined by (25) and (32) can

be solved using several techniques, such as the primal-dual
interior point method (PD-IPM) [23], [24], [25], the alter-
nating direction method of multipliers (ADMM) [25], [32]
and the split-Bregman distance method [33], [34], [35],
[132], [133], [134]. Since the problem is non-linear, these
techniques require iterative procedures without the existence
of a closed-form solution. Careful hyperparameter tuning
can enable TV to preserve sharp edges and small features
in the reconstructed images, preventing the blurring effect.
However, the application of TV is computationally expensive
compared to l2-norm regularization techniques and involves
the non-trivial and time-consuming process of hyperpa-
rameter selection. Additionally, the TV regularization may
introduce significant artefacts in homogeneous conductivity
regions due to the inclusion of high-frequency components.
A recent effort to address the latter is the introduction of
a fractional-order TV regularization prior scheme, applied
in capacitively coupled EIT [135]. Finally, an improved
convergence rate l1-norm optimization method is the fast
iterative shrinkage/thresholding algorithm (FISTA). FISTA is
based on gradient descent and implies regularization through
a proximal shrinkage/soft threshold operator and Nesterov
acceleration [136]. In the field of EIT, the FISTA is applied
in brain injury monitoring [137], while a regularization solver
guided FISTA is proposed in [138], introducing an adaptive
weight coefficient selection approach to reduce the image
artefacts.

F. HYBRID REGULARIZATION APPROACHES
The definition of hybrid regularization (also called elastic-
net regularization) includes a set of approaches that combine
l2-norm and l1-norm weighted regularization terms in the
optimization function. Its general optimization function
formula is written as:

F(σ ) = ∥UUU (σ ) −VVV∥
2
WWW + λ21 ∥σ∥

2
QQQ + λ22 ∥σ∥1 . (33)

Such approaches take advantage of both the stabilization
capabilities of the l2-norm term and the sparsity and sharp-
ness of the l1-norm term. [139] gives an extensive description
of the elastic-net method and its applicability in image
processing. In [140] an adaptive weighted hyperparameter,
defined as a function of conductivity gradients, is used to
control the trade-off between the Tikhonov and TV priors.
Additionally, [141] describes a non-linear difference EIT
method which employs a smooth prior term for the absolute
conductivity and a TV prior term for the conductivity
change which is constrained in a particular region of
interest (ROI). The method was extended in 3D structures
demonstrating its robustness in shape mismatches [142].
In [143], a framework which formulates the optimization
function with an l1-norm measurement data term and lp-
norm regularization term for electromagnetic tomography is

VOLUME 12, 2024 47805



C. Dimas et al.: Advances in EIT Inverse Problem Solution Methods

introduced. The work presented in [144], which describes
a regularized orthogonal matching pursuit approach for
electrical resistance tomography, could be also classified in
this category. Furthermore, [145] applies a non-linear and
non-convex algorithm based on the homotopy method to
perform electrical resistance tomography. Although hybrid
regularization approaches combine the advantages of both
Tikhonov and TV regularization, the selection of multiple
hyperparameters’ values is very challenging and the whole
process computationally expensive.

G. GREIT
The Graz consensus reconstruction algorithm for EIT
(GREIT) was introduced in 2009 [31] as a popular pixel-wise
linear approach, where a reconstruction matrix based on the
Wiener filter is formulated. The GREIT hyperparameters
are automatically optimized using a series of figures of
merit (FoM) in a training process. This process entails
using a set of K simulated 3D fine-model conductive target
cases along with their corresponding measurement vectors.
The reconstruction process is performed on a coarse pixel
model, while a mapping tensor between the fine and coarse
structure model is calculated. In the case of 2.5D GREIT
reconstruction, which is often exploited, the fine forward
model is 3D and the coarse reconstruction model is 2D.

In GREIT, a target noise figure (NF) FoM is selected
according to the desired spatial resolution and the following
reconstruction matrix is formulated:

RRR = X̃̃X̃X tYYY Tt
(
JJJ6xJJJT + 6n

)−1
, RRR ∈ RNe×Nh, (34)

where X̃̃X̃X t ∈ RNe×K is the normalized matrix of theK training
samples desired positions (x̃̃x̃x(1), x̃̃x̃x(2), . . . , x̃̃x̃x(K )), Ỹ̃ỸY t ∈ RNh×K

is the normalized matrix of the corresponding measurement
vectors (ỹ̃ỹy(1), ỹ̃ỹy(2), . . . , ỹ̃ỹy(K )), 6x ∈ RNe×Ne is the covariance
matrix of the training targets set distribution and 6n ∈

RNh×Nh is the covariance matrix of the measurements’ signal
noise distribution. The optimization function imposed is:

F(RRR) =

K∑
k=1

∥∥∥x̃̃x̃x(k) −RRRyyy(k)
∥∥∥2
WWW

(35)

By using theRRRmatrix that minimizes (35), the conductivity
distribution is estimated according to the following linear
formula:

σ∗ = RRRVVV . (36)

GREIT is widely used for both 2D and 3D lung imag-
ing [146], [147], [148]. One of the key advantages of GREIT
is its ability to provide high spatial resolution images of
the internal structures of the lungs. In addition, GREIT
has an automatic hyperparameter tuning mechanism that
makes it easier to use compared to other EIT algorithms.
This feature helps to optimize the algorithm’s parameters
without the need for manual intervention, which can be a
time-consuming process. On the other hand, the necessity
of a fine forward pixelwised model often makes GREIT

computationally expensive, which is a hard drawback for
real-time lung imaging applications.

H. D-BAR
The D-Bar EIT reconstruction method provides a direct EIT
image using a non-linear inverse Fourier transformation.
It approximates the Dirichlet-to-Neumann (DN or voltage-to-
current) map on the SUT boundary ∂� [26], [27], [28], [29].
In D-Bar, the EIT governing equation (1) is transformed to
Schrodinger’s equation on the complex plane z = z1+iz2 ∈ C
through the following substitution q(z) = σ−

1
2 (z)1σ

1
2 (z) and

ũ(z) = σ
1
2 (z)u(z). Then, the following equation is derived:

(−1+ q(z))ũ(z) = 0, z ∈ � (37)

Assuming homogeneous σ (z) = σo = 1 near ∂� and
extending the domain to the whole complex plane with
q(z) = 0 in C \�, (37) is satisfied by the Faddevv (complex
geometrical optics-CGO) solutionsψ(k, z), for any z ∈ C and
k = k1 + ik2 ∈ C \ {0} [26]. CGOs are special Schrodinger’s
equation solutions that have an asymptotic behaviour to eikz

far from the plane origin.
Next, by defining the expressions:

µ(z, k) ≜ e−ikzzzψ(z, k), (38)

k z ≜ (k1 + ik2)(z1 + iz2) (39)

and

e(z, k) ≜ exp{i(kz+ k̄ z̄)} (40)

and by using the non-linear Fourier scattering transform:

t(k) =

∫
C
e(z, k)q(z)µ(z, k)dz (41)

and the Alessandrini’s identity [149], the following transfor-
mation can be derived:

texp(k) =

{ ∫
∂�
eik̄ z̄(3σ −31)eikzdS(z), 0 < |k| ≤ R

0, otherwise

}
.

(42)

In the expression above, R is a low pass-filter cut-off
‘‘regularization’’ hyperparameter, while 3σ and 31 denote
the DNmaps for the non-homogeneous and the homogeneous
conductivity distribution cases respectively. The DN map,
which is approximated by the admittance matrix in (17),
is defined as the inverse of the Neumann-to-Dirichlet (ND
or current-to-voltage) map Rσ which satisfies the following
expression:

Rσ j = u|∂� (43)

where j denotes the current density distribution on ∂�.
By defining the differentiation operator ∂̄k =

∂
∂k1

+ i ∂
∂k2

, the
D-Bar equation is formulated:

∂̄kµ(z, k) =
1

4π k̄
t(k)e(z,−k)µ(z, k) (44)
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A solution can be derived using the second kind Fredholm
integral equation:

µexp(z, κ) = 1 +
1

4π2

∫
C

texp(k)e(z,−k)
(κ − k)k̄

µexp(z, k)dκ1dκ2.

(45)

Finally, an estimation of the conductivity distribution σ exp

can be obtained from the square of µexp when k tends to zero:√
σ exp(z) = lim

k→0
µexp(z, k), z ∈ �. (46)

The D-Bar method has been shown to be robust to mod-
elling errors, signal noise and both isotropic and anisotropic
conductivities. It has been applied to both a-EIT and td-EIT
for either biomedical and industrial EIT imaging [150] and
is associated with the trigonometric current pattern [151],
[152]. Unlike linear and non-linear regularization techniques
that assume systematic properties of the signal noise and
conductivity distribution, the D-Bar initially assumes noise-
free data, with filtering applied in the transformation step (42)
[152]. The D-Bar method is extensively compared with
GREIT and Laplace prior Tikhonov regularization in [152].
This study includes a variety of test-cases, evaluation
with quantitative FoMs, while it analyses the impact of
hyperparameter’s selection. In addition, a recent work applies
a-priori radar data information about the perturbation’s
position in the D-Bar algorithm in order to increase the
images’ spatial resolution [153].

Finally, the Calderon method constitutes a linearized direct
inverse-scattering reconstruction approach, based on the D-
Bar one [154]. Contrary to the D-Bar, the Calderon method
permits complex impedance map reconstruction, at the cost
of reduced spatial resolution [155], [156]. In [157], the
measurement patterns are modified in order to optimize the
approximation of the CGO functions in the SUT interior.
In [158], the Calderon method is applied in human chest EIT,
by using the adjacent stimulation pattern. Finally, in [159],
a 3D cyclinder implementation of the method is presented
under various electrode configurations.

I. SUBSPACE OPTIMIZATION
The subspace optimization method (SOM) was presented
in [160] as an inverse scattering problem solution approach
and was firstly applied in EIT in [161]. The SOM framework
utilizes the MoM to express the electric field in an Ne-
subspace discretized domain to formulate the following two
vectorized-form equations:

Ē̄ĒE td = Ē̄ĒE0
d +

¯̄G¯̄G¯̄GDξ̄ Ē̄ĒE td (47)

and

V̄̄V̄V d =
¯̄G¯̄G¯̄G∂ ξ̄ Ē̄ĒE td . (48)

In the expressions above, Ē̄ĒE0
d ∈ R2Ne×1 denotes the homo-

geneous electric field for the d-th current pair injection (2-
dimensional case), Ē̄ĒE td ∈ R2Ne×1 the corresponding inhomo-
geneous field and ¯̄G¯̄G¯̄GD ∈ R2Ne×2Ne the dipole-Green function

matrix, computed as ¯̄G¯̄G¯̄GD(r, r′) · ppp = −∇r

[
∇r ′G(rrr, r ′r ′r ′) · ppp

]
(ppp

is an arbitrary dipole). Furthermore, ξ̄ ∈ R2Ne×2Ne expresses
the polarization tensor, which is a block diagonal matrix, with
each element-block i = {1, 2, . . . ,Ne} defined as follows:

ξ̄ i = Ai
[
σi − σo

]
III2×2, ξ̄ i ∈ R2×2, (49)

where Ai ∈ R+ is the area (or volume) of the i-th subspace
and III2×2 ∈ R2×2 the unity matrix. In addition, V̄̄V̄V d ∈

Rh×1 is the voltage measurement matrix corresponding to
the d-th current excitation and ¯̄G¯̄G¯̄G∂ ∈ Rh×2Ne a boundary
Green function, expressing the boundary potential from the
axis-oriented component sources.

The induced constrast current (ICC) vector is defined for
the bases-expansion SOM (BE-SOM) as follows:

J̄̄J̄Jd = ξ̄ Ē̄ĒE td , J̄̄J̄Jd ∈ R2Ne×1. (50)

The ICC splits into a deterministic term J̄̄J̄Jdetd and an
ambiguous term J̄̄J̄Jad :

J̄̄J̄Jd =

L∑
i=1

ū̄ūu∗
i V̄̄V̄V d

si
v̄̄v̄vi︸ ︷︷ ︸

J̄̄J̄Jdetd

+
¯̄F¯̄F¯̄F ᾱkd︸︷︷︸
J̄̄J̄Jad

, (51)

where J̄̄J̄Jdetd is derived from (47),(49) and (50), by performing
TSVD (see subsection III-C). Furthermore, in the J̄̄J̄Jad term,
¯̄F¯̄F¯̄F ∈ R2Ne×k is the Fourier transform matrix and ᾱkd ∈ Rk×1

a vector of the k first low frequency 2-dimensional Fourier
coefficients, corresponding to the d-th current excitation. The
following objective function is then defined [60], [161]:

F(ᾱk1, ᾱ
k
2, . . . , ᾱ

k
N , ξ̄ ) =

N∑
d=1

 1
fid
d∥∥V̄d
∥∥2
2

+
1sta
d∥∥∥J̄detd

∥∥∥2
2

 , (52)

where 1fid
d is the residual of (48):

1
fid
d =

∥∥∥ ¯̄G¯̄G¯̄G∂ J̄̄J̄Jdetd +
¯̄G¯̄G¯̄G∂ ¯̄F¯̄F¯̄F ᾱkd − V̄̄V̄V d

∥∥∥2
2

(53)

and 1sta
d is the residual of (50):

1sta
d =

∥∥∥ ¯̄F¯̄F¯̄F − ξ̄ ( ¯̄G¯̄G¯̄GD ¯̄F¯̄F¯̄F) − ξ̄ (Ē̄ĒE0
d +

¯̄G¯̄G¯̄GDJ̄̄J̄Jdetd ) − J̄̄J̄Jdetd

∥∥∥2
2
. (54)

In the BE-SOM, a regularization (usually TV, see sub-
section III-E) term R(ξ̄ ) is also added in (52) [60]. The
iterative process followed to find ξ̄ and ᾱkd that minimize (52)
can be briefly described as follows. Firstly, ξ̄ and ᾱkd are
properly initialized. Secondly, ᾱkd is updated, adding the
Polak-Ribiere-Polyak (RBR) conjugate gradient ρ̄dn [162]
multiplied with the line-search length ldn (n-th iteration):

ᾱkd,n = ᾱkd,n−1 + ldn ρ̄dn . (55)

Furthermore, the ICC J̄̄J̄Jd and the total electric field Ē̄ĒE td
should be updated using (51) and (47)-(50) respectively.
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Then, ignoring the regularization term and directly minimiz-
ing the quadratic-type objective function (52), the following
initial solution is acquired for ξ̄ within each subunit i:

ξ̄
n,0
i =

(
N∑
d=1

Ē̄ĒE t∗d,n,i∥∥J̄̄J̄Jdetd

∥∥
2

J̄̄J̄Jp,n,i∥∥J̄̄J̄Jdetd

∥∥
2

)
·

 N∑
d=1

∥∥∥Ē̄ĒE td,n,i∥∥∥22∥∥J̄̄J̄Jdetd

∥∥2
2


−1

.

(56)

The polarization tensor ξ̄ is then updated within an inner
loop as follows:

ξ̄
n,h

= ξ̄
n,h−1

+ lhρ̄h, (57)

until a defined maximum number of iterations is satisfied
(h = hmax). The whole process is repeated until the outer loop
iterations reach a defined maximum number (n = nmax).
The BE-SOM demonstrates improved spatial resolution

and successfully treats the inverse problem’s non-linearity.
On the other hand, it has the drawbacks of increased
complexity and slow convergence [60]. In [60] a TV
regularization term is added in the optimization scheme,
within a deep-learning context of dominant currents. In addi-
tion in [61] the BE-SOM framework is enhanced using
induced-current deep learning (see also section VI). Finally,
in [163], two adaptively regularized BE-SOM are proposed,
including an l1-norm TV and an adaptively multiplicative
weighted l2-norm regularization.

J. HYPERPARAMETER SELECTION METHODS
In the regularization-based inverse problem approaches, the
selection of proper hyperparameter values is crucial for
the images’ quality. In practical terms, the corresponding
values are often tuned until the qualitative and/or quantitative
specifications of the produced image are satisfied. However,
in many cases this method is non-straightforward and ineffi-
cient. In an effort to automate the hyperparameter selection
process, a variety of algorithms have been developed.

The L-curve method, discussed in [164] and [165], is
based on the curve which demonstrates the relation between
the fidelity and the regularization norm terms. The optimal
hyperparameter value is located at its maximum curvature
(corner) point. Although the L-curve method is very popular,
it does not apply in cases where a corner cannot be indicated
[117].

In the Generalized cross-validation (GCV) [165], the
hyperparameter is chosen as the minimization point of the
following function:

GCV (λ) =
∥JJJσ∗ −VVV∥

2
WWW(

tr
(
QQQ− (JJJTWWWJJJ + λ2QQQ)−1JJJTWWWJJJ

) )2 , (58)

where σ∗ is an initial estimate of the conductivity distribution,
usually derived through a heuristically chosen hyperparam-
eter. GCV does not involve the penalty term R(σ ) in its
estimation; however, it requires an initial estimation σ∗ and
is computationally expensive [166].

FIGURE 3. A td-EIT thoracic reconstruction simulation during the
breathing process. i) The CT-based 3-dimensional fine models
corresponding 5 discrete states between the expiration and the
inspiration-ends. ii) A 2-dimensional sketch of the tissues’ shape changes
and the interpolated 2-dimensional inverse model ground truth. iii)
Reconstructed images using TSVD, non-linear Laplace prior Tikhonov
regularization, TV regularization with PD-IPM, GREIT and non-linear
difference hybrid regularization [142].

In theNFmethod, which is introduced in [16], a target ratio
of the measurements and image SNR is selected, while λ is
derived through a line or logarithmic search method. Apart
from GREIT, NF is also applied in common regularization
techniques, with the drawback of high computational cost.

Finally, the BestRes method [117], is based on the optimal
curvature point of a resolution curve that demonstrates the
relation between log(λ) and the blur radius of a reconstructed
conductivity inclusion. Despite the BestRes has shown
interesting results, numerous EIT images are required to
extract the resolution curve.

A comparison summary of the conventional EIT meth-
ods, including their basic concept, their advantages and
disadvantages as well as relevant resources can be found in
Table 1. In addition, Fig. 3 presents simulation results of
dynamic thoracic image reconstruction using 5 conventional
and popular techniques. To visually evaluate each method’s
robustness, this simulation includes shape and conductivity
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changes of the tissues during the inhalation process. Mis-
matches between the 3-dimensional CT-based simulation
models and the coarse 2-dimensional inverse model are also
deliberately introduced. In particular, the simulation models
are comprised of 130000 − 160000 tetrahedral elements
and 27000 − 32000 nodes, depending on the breathing
state (see Fig. 3 a), while the inverse model is comprised
of 1024 triangular elements and 545 nodes. A Gaussian
noise of −50dB SNR has also been added to the simulated
measurements to evaluate each method’s robustness (see also
subsection III-A). In the regularization-based approaches,
the hyperparameter was heuristically selected in order to
maximize the Pearson correlation coefficient (PCC) of each
image, while in theGREIT implementation, the target NFwas
set to 0.5. The MATLAB code used can be found in.1

IV. SHAPE RECONSTRUCTION APPROACHES
EIT conventional reconstruction approaches exhibit limited
capability in accurately recovering the shapes of inclusions.
This is crucial for medical applications, especially in lung and
perfusion monitoring and the detection of malignant tissues,
where organ and tissue shapes vary dynamically from patient
to patient and over time. To address this challenge, shape
reconstruction methods have been developed and applied in
EIT. These methods transform the reconstruction problem of
the conductivity map to a multi-phase flow problem, assum-
ing a homogeneous reference background and piecewise
constant conductivity inclusions. This approach significantly
reduces the number of unknowns, thereby mitigating the
ill-posed nature of the problem. The general optimization
formula for shape-driven EIT reconstruction can be described
as follows:

(σv∗, κ∗) = argmin
κ∈RNb×1,σv∈R(Nc+1)×1

{
∥UUU (σv, κ) −VVV∥

2
WWW

+λ21 ∥κ − κ∥
2
QQQ1

+ λ22 ∥σv − σv∥
2
QQQ2

}
, (59)

where Nb is the number of basis functions used, κ ∈ RNb×1

is a vector of properly defined basis functions’ coefficients,
Nc is the number of conductivity inclusions to be recovered,
σv = [σo, σ1, . . . , σNc ]

T
∈ R(Nc+1)×1 denotes the piecewise

constant values of the homogeneous reference conductivity
σo and the conductivity inclusions’ values {σ1, σ2, . . . , σNc}.
In addition, κ and σv denote the reference values for κ and
σ respectively and QQQ1 ∈ RNb×Nb , QQQ2 ∈ RNc×Nc the prior
filter matrices used for the coefficients’ and conductivities
values’ regularization terms respectively. A number of shape
reconstruction approaches have been developed since the
early 2010s and are briefly reviewed in this section.

A. PARAMETRIC LEVEL SET
The usage of level set functions is a common approach
for shape reconstruction inverse problems [36]. At first, the
traditional level set (TLS) was exploited [167], [168], [169]

1https://github.com/chdim100/Thoracic-EIT-Imaging-Algorithms

by expressing the conductivity distribution σ (rrr) as a mixture
of piecewise constant conductivities in the domain �:

σ (rrr) = σo(1 − Hϵ(f (rrr))) +

Nc∑
i=1

σiHϵ(f (rrr)), rrr ∈ �, (60)

where Hϵ is a smooth version of the Heaviside function to
mantain differentiability of the optimization function [170]
and f (rrr) =

∑Nb
i=1 κipi(rrr) is the level set function which

is positive in the subdomains D = D1 ∪ D2 ∪ . . . ∪ DNc
that correspond to the Nc conductivity inclusions. In addition
[pi(rrr)]

Nb
i=1 denote the basis functions, with the radial basis

functions (RBFs) to be a common choice. It is noted that in
case the inclusions overlap, more level set functions should
be used and σ (rrr) should also be properly defined [37].
The parametric level set (PLS) sets a threshold value

c > 0 for the level set functions, maintaining more shape
flexibility as well as reduced complexity and ill-posedness
due to the dimensionality reduction [37], [39]. To express
σ (rrr) in PLS, (60) is modified as:

σ (rrr) = σo(1 − Hϵ(f (rrr)) − c) +

Nc∑
i=1

σi(Hϵ(f (rrr)) − c). (61)

The problem (59) can be solved using a non-linear
minimization method, such as the Gauss-Newton one. The
Jacobian matrix J ∈ R(Nh)×(Nc+Nb) is computed by using the
chain rule [39]:

JJJ =
∂U(σv, κ)
∂(σv, κ)

=
[
JJJσ0 JJJσ1 . . . JJJσNc JJJκ1 . . . JJJκNb

]
,

(62)

with

JJJσi =
∂UUU (σv, κ)
∂σi

=
∂UUU (σv, κ)

∂σ
·
∂σ

∂σi
, JJJσi ∈ RNh×1 (63)

for i = {0, 1, . . . ,Nc} and

JJJκj =
∂UUU (σv, κ)
∂κj

=
∂UUU (σv, κ)

∂σ
·
∂σ

∂f
·
∂f
∂κj

, JJJκj ∈ RNh×1

(64)

for j = {0, 1, . . . ,Nb}. For the computation of the conven-
tional Jacobian matrix JJJσ =

∂UUU (σv,κ)
∂σ

see subsection II-E.
Fig. 4 demonstrates the PLS concept in a simplified way:

the inclusions are obtained by applying a threshold c > 0 on
a linear combination of a PLS functions. Finally, the PLS was
extended to td-EIT [171] (see also II-C).

B. MOVING MORPHABLE COMPONENTS
The moving morphable components (MMC) approach for
shape reconstruction formulates the level set function f (rrr)
using analytical geometric features [172]. In particular,MMC
assumes a number of n shape components that form an
inclusion, a level set function f = max (f1, f2, . . . , fn) and
applies the following function for each component i:

fi(x, y) = 1 =

(
x ′

Li

)m
−

(
y′

gi(x ′)

)m
(65)
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TABLE 1. Comparison table of the classical EIT imaging approaches.

FIGURE 4. Visual representation of the PLS principle. i) Superposition of 2
RBFs. ii) Application of a threshold c . iii) Inclusions’ shapes after the
application of the threshold and the heaviside function Hϵ . iv) Visual
example of the distributed centers of a set of RBF functions that form
f (rrr ).

where [
x ′

y′

]
=

[
cos(θi) sin(θi)

− sin(θi) cos(θi)

]
·

[
x − x io
y− yio

]
, (66)

rrr = (x, y),m is an even number, Li the half length of the i-th
component, θi is the corresponding component’s tilted angle
from the x-axis and (x io, y

i
o) denotes the i-th component’s

geometric center. In addition, g(x ′) describes the component’s
thickness which includes the parameterswi1,w

i
2 andw

i
3 [172].

Each component’s vector κκκ i ∈ R1×7 in the optimization
function (59) includes all the corresponding parameters:

κκκ i = [x io, y
i
o, Li, θi, w

i
1, w

i
2, w

i
3]. (67)

The problem can be solved similarly as in PLS, providing
flexibility in the representation of the inclusions’ geometries.
However, the selection of f (rrr) strongly affects the imaging
performance [172], [173].

C. B-SPLINE LEVEL SET
The B-spline level set EIT shape reconstruction method
makes use of a bivariate piecewise polynomial function of
the following form:

f (x, y) =

m∑
i=0

n∑
j=0

Ni,k (x)Nj,l(y)κi,j (68)

which is in tensor product form between Ni,k (x) and Nj,l(y)
that represent the i-th and j-th B-spline basis functions within
a domain geometry that includes a total of (m+ 1)× (n+ 1)
control points [174]. Furthermore, k and l denote the degrees
of the corresponding basis functions and κi,j denote the
B-spline coefficients that are parametrized as unknowns.
The B-spline basis functions Ni,k are derived through the

following formulas:

Ni,0(x) =

{
1, xi ≤ x ≤ xi + 1
0, else

}
(69)

and

Ni,k (x) =
x − xi
xi+k − xi

Ni,k−1(x) +
xi+k+1 − x
xi+k+1 − xi+1

Ni+1,k−1(x),

(70)

where

xi =


0, i = 0, 1, . . . , k
i−k

m−k+1 , i = k + 1, k + 2, . . . ,m
1, i = m+ 1,m+ 2,m+ k + 1

 . (71)
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The sign of the level set function f (x, y) is described as in
TLS (positive within the inclusion D, zero on the inclusion’s
boundary ∂D or elsewhere) and an optimization problem (59)
is formulated and solved for (m+1)×(n+1)+2 unknowns (in
the case of a single conductivity inclusion) [174]. Although
the B-spline curve based shape reconstruction approach is
capable to preserve the sharp inclusions’ boundaries using
low number of coefficients κi,j, it is necessary to know the
number of inclusions prior to the reconstruction process.

D. BOOLEAN OPERATIONS FOR SHAPE
RECONSTRUCTION
The Boolean operation-based shape reconstruction approach
exploits Boolean operations between a number of Nl level set
functions to model a number of Nc conductivity inclusions,
with Nl ≥ Nc. Each level set function corresponds to a
specific shape primitive. For example, the union and the
intersection of such primitives are obtained by estimating
their maximum and minimum, respectively. In principle,
each shape primitive is described by a closed curve CCC i
parameterized by a control point vector PPPi, with i =

{1, 2, . . .Nl}. The primitives are initialized and then updated
through an optimization process similar to (59), where
the control point vectors along with the conductivity level
values are estimated. The process is described in detail
in [173], where B-Spline curves are used to form the shape
primitives. The Boolean operation method appears to have
great capability in preserving sharp properties. On the other
hand, some curves may intersect with themselves, causing
irregular shape detection, while the corresponding Jacobian
calculation is based on the perturbation method, which
introduces numerical computation errors.

E. FOURIER REPRESENTATIONS
The Fourier shape reconstruction approach applies Fourier
series to represent each shape’s primitive curve (2D case):

CCC j =

(
xj(s)
yj(s)

)
=

Nθ∑
n=1

(
γ
xj
n θ

x
n (s)

γ
yj
n θ

y
n (s)

)
, j = 1, 2, . . . ,Nl, (72)

where Nl is the number of regions Dj ⊆ �, θn(s) the periodic
differential functions, s ∈ [0, 1] the curve parameter and
Nθ the order of the Fourier coefficients γn [38]. The basis
functions are expressed as follows:

θx,yn (s) =


1, n = 1
sin
(
2π n

2 s
)
, n = 2, 4, 6, . . .Nθ − 1

cos
(
2π n−1

2 s
)
, n = 3, 5, 7, . . .Nθ

 (73)

The Fourier coefficients γn form a vector 0 = [γ i]
Nl
i=1 ∈

R2NθNl×1, where γi = [γ xi1 , . . . , γ
xi
Nθ , γ

yi
1 , . . . , γ

yi
Nθ ]

T
∈

R2Nθ×1. Additionally, signed distance functions are used to
represent the level set functions:

f (rrr, γ j) = µ(rrr)d(rrr,CCC j(γ j)), (74)

where rrr = (x, y) represents the finite element nodes’
coordinates (2D), µ(rrr) is a sign function, which value is

1 within the corresponding region Dj, zero on Cj = ∂Dj
and −1 outside of it and d(rrr,CCC j(γ j)) denotes the Euclidean
distance between rrr and the region’s boundary. Boolean union
operations (see subsection IV-D) can be applied on a set of
signed distance functions to acquire their maximum8(rrr,0),
which can be used as a heaviside function parameter to
express the conductivity phase-flow map. A minimization
problem, similar to (59) is considered, from which the γγγ i
coefficients are estimated.

F. FACTORIZATION METHOD
The factorization method (FM) is a non-iterative technique
where the conductivity distribution is represented as follows:

σ (rrr) = σo(rrr) + γ (rrr)χD(rrr), (75)

where γ (rrr) is a constant sign function that holds on D ⊆ �

and χD(rrr) is an indicator (characteristic) function which
is revealed from the inverse problem, using the knowledge
of the DN map 3σ (see subsection III-H) [175]. Using
the Neumann boundary conditions of the EIT governing
equation (see also section II), the Green’s function for the
homogeneous conductivity case is defined [175], [176].
A free-space dipole potential function φ̂nz (rrr, σo(zzz)) is then
computed (for a dipole between rrr and zzz, zzz ∈ �), which
holds for the homogeneous conductivity case andnnn is a dipole
direction unity vector. In addition, by using a numerical
method (FEM or BEM), the potential V n

z (rrr) which is related
to the conductivity perturbations is estimated. The total
potential in each case is defined as:

φnz (rrr) = φ̂nz (rrr, σo(zzz)) + V n
z (rrr) (76)

The estimated potentials φnz (rrr) are used to form a finite
dimensional DN map approximation 6N

σ ∈ RNe×Nh of 3σ .
At the same time, the following set of L2(∂�) functions is
defined for each electrode’s subdomain Ei:

f =

N∑
i=1

χEi fi, fi ∈ R (77)

In addition, an orthogonal projector PN which integrates
the CEM boundary conditions [177] is defined as:

PN f =

N∑
i=1

χEi
1

|Ei|

(∫
Ei
fds+

1
N

∫
GN

fds
)
, (78)

where GN denotes the gap between the electrodes. By per-
forming TSVD on 6N

σ ≃
∑L

i=1 σiuuuivvv
T
i (see subsection III-C)

for the first L singular values, we get the following
approximation:

f N (zzz,nnn) =
1∑L

i=1(PNφnz ,uuui)2

L∑
i=1

(PNφnz ,uuui)
2

σi
, (79)

where (., .) denotes the inner product. Evaluation of the above
formula for a specified number of dipoles gives the inverse of
the indicator functions χD(rrr).
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Overall, the FM can be applied for self-constrained
piecewise analytic conductivity inclusions, providing a
non-iterative shape estimation. However, prior knowledge of
σo is needed, while the exact conductivity distribution values
are not acquired [178], [179].

G. MONOTONICITY-BASED RECONSTRUCTION
Monotonicity-based EIT reconstruction is a non-iterative
approach that utilizes the monotonicity property of the
EIT measurements’ behaviour to estimate the conductivity
distribution within a subject under test (SUT). It exploits the
observation that variations in the object’s conductivity σ lead
to predictable monotonic variations in the measured EIT data
VVV [180], [181]. It has been applied in lung time-difference
EIT imaging, assuming a linear approximation of the
boundary voltages’ time variation:

∂Udm(t)
∂t

= −

∫
�

∂σ (t, rrr)
∂t

∇ruo(Id , rrr) · ∇ruo(Im, rrr)dA

(80)

where uo(Id , rrr) and uo(Im, rrr) refer to the homogeneous
case drive and lead potential distributions respectively [182].
The conductivity change rate in time is decomposed in two
parts, related with the lung ventilation and cardiac perfusion
respectively:

∂σ (t, rrr)
∂t

=
∂σL(t, rrr)
∂t

+
∂σH (t, rrr)

∂t
, (81)

while the ventilation related boundary voltages are numeri-
cally estimated as:

Udm,L(t) = −

∫
�

σL(t, rrr)∇uo(Id , rrr) · ∇uo(Im, rrr)dA (82)

and form a time-variant matrixUUUL(t) ∈ RN×N . Furthermore,
the constraints of increasing conductivity during exhalation
and decreasing conductivity during inhalation are raised in
�, while the boundary data is modified as follows:

Ũdm,L(t)

=
Udm,L(t)

sgn
(∫
�

∇ruo(Id , rrr) · ∇ruo(Im, rrr)dA
)

+

(
1 − sgn

(∫
�

∇uo(Id , rrr) · ∇uo(Im, rrr)dA
)
Ūdm,L

)
.

(83)

Finally, after the spatial discretization of the conductivity
change rates in vectorized form, the following optimization
problem is solved:

F
(
∂σL

∂t

)
=

∥∥∥∥JJJ ∂σL∂t −
∂UUUL

∂t

∥∥∥∥2
2
+ λ2

∥∥∥∥∂σL∂t
∥∥∥∥2
2

(84)

subject to a monotonous conductivity change during each
separate breathing state period (inhalation and exhalation).
The problem above is also properly modified for the detection
of local conductivity changes and inclusion shapes [182].

The monotonicity-based EIT reconstruction method
effectively reconstructs convex-shaped conductivity inclu-
sions and demonstrates robustness against noise. However,
it requires knowledge of σo and may not be as efficient for
non-convex shapes. Furthermore, non-linear extensions have
been developed for the monotonicity approach [183].

H. GRADIENT-BASED OPTIMIZATION
The gradient-based optimization in EIT tends to minimize the
following objective function:

F(σ ) =

N∑
d=1

h∑
m=1

(∫
ed

Vdm − Udm(σ )
zd

dS − Idm

)2

. (85)

The notations in (85), are the same as mentioned in
section II, except from d that refers both to the electrode
and the current stimulation pair number. In the binary
optimization framework presented in [184], a two-phase
conductivity distribution is assumed, with the corresponding
values defined as σo and σ1. The conductivity distribution
is formed by combining convex 2D shapes. The initial
steps include shape parametrization, solution of the forward
problem and evaluation of F(σ ). Initialization of the sample
basis and reformulation of the minimization scheme by
parametrizing σ as a function of the sample-based parameters
P = {Pi}Nbi=1 and a weight vector α = [αi]

Nb
i=1, such as

σ (r) = σ (P,α) are then performed. The next step is to
estimate the adjoint state ψ(rrr) for each current injection Il
via the following problem:

∇
(
σ (rrr)∇ψ(rrr)

)
= 0, rrr ∈ � (86)

∂ψ(rrr)
∂nnn

= 0, rrr ∈ ∂�\

N⋃
l=1

el (87)

ψ(r) + zl
∂ψ(rrr)
∂nnn

= 2βl

(∫
el

Vl − u(rrr)
zl

dS + Il

)
, (88)

where r ∈ el , l = 1, . . . ,N and βl > 0 a constant. In addition,
the gradients F ′(σ ), ∇PF(σ ) and ∇αF(σ ) are obtained as
follows:

F ′(σ ) = −

N∑
l=1

∇ψ l(rrr) · ∇ul(rrr), (89)

∇PF(σ ) = ∇PσF ′(σ ), (90)

∇αF(σ ) = σ̄F ′(σ ), (91)

where σ̄ is the vector of conductivity samples. Furthermore,
the control set (P,α) and the conductivity is updated in each
iteration. Finally, coarse-scale binary tuning is performed to
reach the final solution [184], [185].

The recently proposed gradient-based approach offers
sufficient spatial performance and can be used with paral-
lelization to reduce the computational costs. This provides
the space for expansion at multiphase conductivity estimation
problems with various convex shapes, making the method
suitable for cancer detection applications [184]. Nevertheless,
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gradient-based optimization methods require prior knowl-
edge of the number of inclusions and their approximate
positions and they still suffer from computational issues.

Additionally to the shape reconstruction approaches
briefly described above, it is worth to mention the linear
sampling method [186], the non-iterative enclosure-based
method [187], the extended Kalman filtering for time-
variant multiphase-flow boundary estimation [188], [189],
[190], the BEM-based geometrically constrained boundary
reconstructor (CGBR) [191]. A comparison summary of the
shape EIT reconstruction methods can be found in Table 2.
A more detailed summary can be found in [38].

V. POPULATION-BASED APPROACHES
In addition to regularization and shape reconstruction
approaches, there exists a distinct category of algorithms
in the field of EIT that address the reconstruction problem
through the process of a population of individual candidate
images. This section presents a concise overview of the
utilization of genetic algorithms and particle swarm optimiza-
tion in EIT.

A. GENETIC ALGORITHM
Genetic algorithm (GA) is a global random search
meta-heuristic algorithm that mimics the biological evolution
process. The goal is to find the optimal conductivity
distributionwithin the domain that best matches themeasured
data by transforming the inverse problem to avoid its ill-posed
and ill-conditioned nature. In particular, an objective function
is formulated based on the summary of absolute boundary
voltage differences terms.

F(σ ) =

Nh∑
i=1

∥Ui(σ ) − Vi∥ , (92)

where the conductivity values are bounded between a low σl
and a high σh value. A fitness function h(σ ) is then defined
as the reciprocal of F(σ ): h(σ ) = 1/F(σ ) and evaluated for a
number (population) of M EIT images (individuals) that are
initially randomly generated. For each individual and element
the corresponding σ values are encoded (digitized) as Lp-bit
binary strings:

xij = [αij]
Lp
k=1, i = {1, . . . ,M}, j = {1, . . . ,Ne},

αijk ∈ {0, 1}, (93)

obtaining a precision of 1x = (σh − σl)/(2Lp − 1). The set
of these strings completes the chromosome space. Then, each
xij is decoded as follows:

x̃ij = σl +
σh − σl

2Lp − 1

Lp∑
k=1

2Lp−kαijk . (94)

In [40], a three-stage GA for EIT was developed. Each
stage involves the generation of an initial population of
images, the selection of parent individuals for mating and
genetic manipulation through crossover (see Fig. 5 for an

FIGURE 5. Example of a multiple-point crossover process.

example), as well as mutation operations. However, in each
stage, different chromosomes are utilized for population
generation. The process starts with the use of σl and σh
chromosomes and subsequently continues with the selection
of a conductivity distribution that maximizes the fitness
function h(σ ). More recently, in [41], a proportional GA was
proposed, where h(σ ) is optimized in a ratio form, in an effort
to improve the convergence rate and the imaging quality.
Until today, the application of GA in EIT is limited to 2D
experimental tank cases.

B. PARTICLE SWARM OPTIMIZATION
Particle swarm optimization (PSO) [192] is a category of
meta-heuristic algorithms that are based on the movement
of a number of M particles (EIT images), that, as in the
genetic algorithms, they are also randomly initialized. At each
iteration κ and image i, PSO updates σ according to the
following rule [42]:

σ κ+1
i = σ κi + vvvκ+1

i , (95)

where vvvi ∈ RNe×1 represents the i-th particle’s velocity,
estimated as follows:

vvvκ+1
i = wvvvκi + c1r1(σ κil∗ − σ κi ) + c2r2(σ κg∗ − σ κi ). (96)

In addition, w ∈ (0, 1) denotes the inertia weighting factor,
c1 > 0 and c2 > 0 the cognitive and the social acceleration
coefficient respectively, where c1+c2 ≃ 4 while r1 and r2 are
uniformly distributed values in [0, 1]. Furthermore, σ κil∗ and
σ κg∗ denote the local and global best individuals respectively.
In particular, the best local position is obtained within the
neighbourhood Nei of the i-th particle:

σ il∗ = argmin
j∈Nei

{
F(σ j)

}
, (97)

while the best global position is obtained within all the M
candidates:

σ g∗ = argmin
j∈[0,M ]

{
F(σ j)

}
, (98)

where F is a defined minimization scheme. The PSO
initialization and update process are briefly shown in Fig. 6.
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TABLE 2. Comparison table of the shape EIT reconstruction approaches.

FIGURE 6. A brief demonstration of the PSO process, including the
random population initialization and the update of a single-pixel
conductivity.

In the case of EIT, PSO has been applied to simulate
circular cases [42], where a comparison with Gauss-Newton
and GA algorithms has been performed. In addition, fish-egg
experimental data has been used in [47], where hybrid PSO
was combined with an RBF NN to enhance imaging accuracy
(see also section VI).

VI. SPARSE BAYESIAN LEARNING APPROACHES
Bayesian approaches offer an effective means of incorpo-
rating prior knowledge into the inverse problem. By esti-
mating the posterior distribution, these methods provide
a solution that considers both the observed data and the
prior information. The Markov Chain Monte Carlo (MCMC)
sampling is a popular general approach in this direction.
However, MCMC is computationally expensive, which is
undesirable, especially for real-time imaging applications.
In the case of EIT, the primary focus is on finding the
conductivity map σ∗ that minimizes (or maximizes) a
defined optimization procedure, rather than the full posterior
distribution. The conductivity map σ∗ is obtained through
a maximum a-posteriori (MAP) estimation process, which
represents the posterior mean. Sparse Bayesian learning
(SBL) is an unsupervised learning technique that formulates
the inverse problem from a Bayesian perspective [193].
The structure-aware SBL (SA-SBL), introduced and applied
in EIT in [43], assumes a clustered sparse conductivity
distribution, considering spatial correlation between the
clusters. In particular, the minimization is defined as follows:

F(σ ) = logP(VVV |σ ) + λ logP(σ ; 2), (99)

where 2 denotes the hyperparameters’ set.
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FIGURE 7. Example of a clustering structure in a thoracic shaped domain
� (for hs = 4).

Anumber of g overlapping clusters, with an equal size of hs
is considered, laid in aNe-pixel area�. Then the EIT problem
can be adapted to the SA-SBL framework by factorizing σ in
the following way:

σ = 9xxx = [91, . . . ,9g][xxx1T , . . . ,xxxgT ]T , (100)

where xxx i ∈ Rhs×1 denotes the i-th cluster’s weight value and

9 i =

[
0T(i−1)×hs

IIIhs×hs 0T(Ne−i−hs+1)×hs

]T
∈ RNe×hs . Fig. 7

demonstrates a simple example of a 2D domain’s � cluster
structure. The linear approximation (19) is then rewritten as:

VVV = 8xxx + eee, (101)

where 8 = JJJ9, 8 ∈ RNh×ghs and eee ∈ RNh×1 denotes a
Gaussian measurement noise, with eee ∼ N (0, λIII ). For each
cluster i we get the sub-matrix 8i = JJJ9 i ∈ RNh×hs . It is
assumed that the prior of xxx obeys the following Gaussian
distribution:

p
(
xxx; {γi,BBBi}

g
i=1

)
= N (0,60) , (102)

that has a zero-mean value and a covariance matrix 60 ∈

Rghs×ghs which is completed as follows:

60 =

 γ1BBB1 . . . 0hs×hs
. . . . . . . . .

0hs×hs . . . γgBBBg

 . (103)

In the expression above, γ = [γi]
g
i=1 ∈ Rg×1 and BBBi ∈

Rhs×hs denote the i-th cluster’s hyperparameters that along
with λ, form the set2 in (99). Each cluster’s coefficient γi can
be initialized to one, while each block matrix BBBi is initialized
as BBBi = Toeplitz

([
1, 0.91, . . . , 0.9hs−1

])
and λ as:

λ =
1

100

√√√√ 1
Nh− 1

Nh∑
i=1

|Vi − V |2, (104)

where Vi denotes the i-th measurement and V the average
measurement value. A maximum a-posteriori (MAP) estima-
tion of the x posterior mean µx ∈ Rghs×1 and covariance
matrix6x ∈ Rghs×ghs is derived through the learning process.

In the SA-SBL approach, the hyperparameters are iteratively
updated to minimize:

F(2) = ln |6v| + VT6v
−1VVV , (105)

where 6v = λIII + 8608
T . By using the expectation-

maximization (EM) algorithm, the corresponding updates are
given by:

µx = 608
T6v

−1V , (106)

6x = 60 − 608
T6v

−1860, (107)

λ =
1
Nh

(
∥VVV − 8µx∥

2
2 +

g∑
i=1

tr
(
6x

i8T
i 8i

))
, (108)

γ κ+1
i = γ κi ·

∥∥√BBBi8T
i 6v

−1VVV
∥∥
2√

tr
(
8T
i 6v

−18iBBBi
) . (109)

To prevent overfitting, [43], each block matrix BBBi is
updated using an intermediate one B̃BBi, with

B̃̃B̃Bκ+1
i = B̃̃B̃Bκi +

1
γi

(
6x

i
+ µx

i
(
µx

i
)T)

. (110)

Then, by introducing

r̃i =

diag
(
B̃BBi, 1

)
diag

(
B̃BBi
) (111)

and

ri = sign(r̃i) · min{|r̃i|, 0.99}, (112)

BBBi can be updated as follows:

BBBi = Toeplitz
([
r0i , . . . , r

h−1
i

])
. (113)

The learning process is continued until no significant
change in the µx norm occurs.
The conventional SA-SBL approach offers notable

improvements in the spatial resolution of EIT images,
while the initial choice of hyperparameters does not have a
significant impact on it. However, its high complexity (O(Nh·
ghs)), mainly affected by the γ learning rule (109), makes
it inefficient and impractical in real-time and 3-dimensional
imaging applications. Additionally, the slow convergence rate
of the EM algorithm, coupled with the need to update the
Jacobian matrix J when substantial conductivity changes
occur, further exacerbates this issue. Another important
drawback of the SA-SBL method is its reliance on pixelized
or voxelized domains, limiting its applicability to complex
geometries and accurate electrode schemes where the FEM
could be more applicable.

Various improvements and advances in SBL have recently
been proposed and applied in EIT to address the issues
mentioned earlier. In [43], the spatial correlation between
neighboring clusters (pattern coupling) was introduced in
the hyperparameter learning rule (109) to improve the
algorithm’s imaging performance. In [44], approximate
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message passing (AMP) [194] was used to approximate the
EM algorithm’s E-step, improving the problem’s complexity
and convergence rate and enabling its application in 3-
dimensional EIT imaging. AMP passes posterior probability
density function (PDF) factors p(Vi|

∑g
j=1 8i,jxxx j) as mes-

sages and multiplies them with each xi within a single-layer
network to estimate a set of reliable beliefs p(xxx j) [44],
[194]. AMP was also adopted in [45], where a multiple
measurement vector (MMV) framework exploited temporal
correlation between time-sequence imaging frames to apply
SA-SBL in td-EIT. In [46], multiple frequency measurement
frames were used as data in a multi-task SA-SBL for fd-EIT,
achieving sufficient spatial performance in experimental tank
cases. Furthermore, [195] combines SA-SBL with a MoM
approach presented in [98], evaluated in lung td-EIT, reducing
the non-linear effect by using a system matrix derived from
a Green function integral equation framework. In addition,
[196] introduces a bound-optimization weighted block SBL
(WBO-BSBL) approach. The bound-optimization method
accelerates the optimization problem by reformulating it in a
convex form. Gamma distribution weighting parameters are
imposed to incorporate prior knowledge. Moreover, in [197],
a 3-layer hierarchical SBL model employing a weighted
Laplace prior is applied in lung respiratory monitoring. The
K-nearest neighbor (KNN) clustering algorithm is used to
adaptively group each disordered conductivity sparse block
(finite element) to a reordered distribution. Additionally,
in [198], a multi-frame constrained BSBL (MF-BSBL)
method used for flexible tactile sensing examines both the
sparsity and the intra-frame and inter-frame correlation of the
conductivity distribution. Another recent research is found
in [199], where an anatomical statistical shape model for
lung and torso is established, incorporating patient-specific
predictors as the model’s hyperparameters with a Gaussian
joint prior. The covariance matrix is decomposed into a
generic smoothness matrix and a statistical shape model prior
matrix. A MAP estimation for the covariance matrix and the
conductivity is obtained through linear approximation, differ-
ing from the general SA-SBL framework. Finally, in [200],
an ROI-shrinkage adaptive BSBL has been proposed for
ECT. Adaptive block encoding is exploited in each iteration
by filtering and grouping subunits that present high intra-
block correlation, enhancing the images’ spatial resolution
and reducing the reconstruction process complexity.

A demonstration of the qualitative imaging performance
of the conventional SA-SBL approach, based on the EM
algorithm and the WBO-BSBL one is shown in Fig. 8. Two
experimental circular tank saline solution cases with metallic
and plastic objects and an in-vivo thoracic case are included.
The experimental tankmeasurement data is provided from the
University of Eastern Finland open-source EITDataset [201].
The measurements have been captured using the 16-
electrode KIT4 EIT system and the adjacent simulation
and measurement pattern. Furthermore, the in-vivo voltage
measurement data was captured using the 16-electrode EIT
instrument described in [202] and is online available in [110].

FIGURE 8. Reconstructed EIT images, using EM-based SA-SBL and
WBO-BSBL. a) Experimental case with 2 metallic objects in a tank. b)
Experimental case with 3 plastic objects in a tank. c) In-vivo thoracic case.

The images capture the lung impedance change due to the
breathing process at a healthy human subject. For the image
reconstructions that correspond to the experimental cases,
a 1225-pixel circular domain is used, while a 1229-pixel
thoracic shape domain is used for the in-vivo cases. For all
the reconstructions, the clusters’ size was uniformly selected
as hs = 4, considering the trade-off between complexity and
sparsity. The MATLAB code used to reconstruct the images
can be found in.2

VII. DEEP LEARNING APPROACHES IN EIT
While the concept of neural networks (NNs) has been
known for several decades, recent advancements in hardware
technology have exponentially enhanced their capabilities
in handling complex learning tasks. As a result, NNs have
gained widespread adoption in the field of medical imaging
to address the challenges associated with inverse image
reconstruction problems. In the context of EIT, NNs have
emerged as a popular choice for addressing the non-linearity
of the inverse problem and effectively incorporating priors to
mitigate its ill-conditioned nature. This has contributed to the
widespread adoption of NNs in both medical and industrial
applications of EIT.

The major drawbacks of EIT imaging performance in
traditional and state-of-the-art non-learning schemes are
primarily the reduced spatial resolution, sensitivity to sig-
nal noise and geometric mismatches and the inability to

2https://github.com/chdim100/Weighted-Sparse-Bayesian-Learning-for-
Electrical-Impedance-Tomography
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accurately reconstruct tissue boundaries. These limitations
significantly impact the aforementioned application areas.
For example, in lungmonitoring, the thoracic and lung shapes
may significantly differ between patients and dynamically
change over time, eliminating EIT’s capability for accurate
and reliable image reconstructions [203]. Furthermore, the
trade-off between signal noise and imaging frame speed
reduces the temporal resolution capability. In geophysical
models, on the other hand, there is a lack of a baseline
measurement frame that could permit difference-EIT imaging
to absorb major modeling errors between the original and
the reconstruction models [1]. To address these issues,
researchers are attempting to mitigate these challenges with
the introduction of more robust DL-based techniques, many
of which are focused on specific applications and their unique
features [74].

Overall, as in other inverse scattering problems, NN-based
learning approaches for EIT can be categorized into three
main groups: A) Direct data-based learning, B) post-image
reconstruction learning and C) model-based learning [64],
[204], [205]. In this section, we provide a concise overview
of approaches from the earliest to the most recent, organized
based on the mentioned classification. The fundamental
learning frameworks are explained. Certain post-image
reconstruction and model-based learning approaches have
evolved as subsequent stages from fundamental EIT recon-
struction methods in the context of deep learning. In such
instances, we elucidate the connection between theoretical
concepts and contributions.

A. DIRECT DATA BASED LEARNING
This category refers to learning approaches that utilize
only the measured voltage data as input information. Most
of the earlier NN-based learning schemes applied in EIT
actually belong to direct-data based learning ones. The
first known work that applied NN for EIT can be found
in [48] (Adaline 1994). The Adaline consists of an input
layer that includes the normalized differential measurement
vector VnVnVn ∈ RNh×1 and an output layer corresponding
to the Ne elements’ conductivity values (see also Fig. 9).
During the learning process, the Adaline learns a linear
relationship between the measurements and the conductivity
distribution. In contrast to the perceptron rule, the weights
www ∈ RNh×Ne are updated in an error-proportional manner
using the Widrow-Hoff learning rule, without any non-linear
activation process. Four years later, in [49], an iterative ANN
approach was presented. A number of ANNs equal to the
current stimulation patterns has been used. Each one has the
corresponding voltage measurement vector as input and a
single hidden layer (introducing non-linear activation), while
the inputs were iteratively updated with the error between the
measured and the computed voltages.

At the same time, two ANN approaches were presented
in [50], using a numerically estimated voltage measurement
vector and a feed-forward NN based circuit equivalent of

FIGURE 9. Explanatory schematic of the adaline NN for EIT. In the update
rule, rrr ∈ RNe×1 refers to the label image and η to the learning rate. Each
output corresponds to an element.

the FEM mesh, respectively. In [51], the solution of the EIT
reconstruction problem was examined through a number of
different ANN architectures. Furthermore, in [52], a back-
propagation ANN is trained using a modified PSO method
(see subsection V-B), in an effort to improve the conventional
back-propagation’s convergence rate. The utilization of the
PSOmethod to train ANNswith potential vector inputs is also
discussed in [47], [53], and [54]. The first study exploits RBF
NNs, while the second one involves simulating filtered noisy
voltage measurements as inputs and conducts comparisons
with iterative Tikhonov and TV regularization using the PD-
IPM (see subsection III-E). In [47], a hybrid PSO involving
RBF ANNs is proposed, which additionally to the works
mentioned, uses simulated annealing to optimize the NN
weights. Moreover, in [55], an autoencoder NN approach
is proposed for electrical capacitance tomography (ECT),
where the encoder and the decoder demonstrate the forward
and the inverse problem, respectively. Finally, in [56],
a number of 3 single and multiple prediction ANNs were
used to reconstruct EIT images from 96 differential voltage
measurements. Notably, in the enhanced ANN version, each
subsystem was responsible for predicting the conductivity
value of a specific element, leading to a simplified training
process.

Although the aforementioned direct data-based ANN
learning approaches are relatively straightforward to imple-
ment, they are associated with significant drawbacks. These
include relatively slow convergence speed and limited
generalization capabilities across different current injec-
tion measurement patterns and setups. Additionally, these
approaches often require large measurement datasets, which
can be scarce in the context of EIT.

B. POST-IMAGE RECONSTRUCTION LEARNING
As convolutional NNs (CNNs) gained popularity in the
medical imaging field, their exceptional feature extraction
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capabilities and ability to handle pixel-wise computations
have also been recognized in the domain of EIT. Since the late
2010s, there has been a growing number of studies exploring
the application of CNNs in EIT, harnessing their potential
for image reconstruction and analysis. As a consequence,
an individual learning approach has risen in the field of
inverse problems and EIT. In particular, an initial estimation
of the conductivity distribution is given by a conventional
imaging approach. Subsequently, a CNN-based learning
process is applied given the roughly reconstructed images
and the corresponding ground truth labels to enhance the
reconstruction quality, including spatial resolution and the
ability to demonstrate sharp organ boundaries.

The first post-image reconstruction learning effort in EIT
actually involved RBF ANNs to obtain improved 3D thoracic
structures [206] from single-step (linear) Gauss-Newton
reconstructed ones. The architecture of the RBF ANNs and
the impact of their corresponding hyperparameter selection
are described in [207].

One of the earliest applications of CNNs in EIT was the
deep D-Bar approach (2018) [58]. In that work, an initial
image reconstructionwas performed using theD-Barmethod,
discussed in subsection III-H. Then, a U-Net architecture
CNN was trained [208] using a 4096 labeled EIT image
dataset for denoising and image segmentation. The deep
D-Bar was evaluated on experimental tanks, including plastic
and metallic objects forming simple geometry inclusions,
as well as inclusions that represent lung injury [58].
Through the reconstructed images, the deep D-Bar approach
showcased its potential in EIT image reconstruction and
analysis.

The U-Net is a state-of-the-art CNN architecture widely
used in medical imaging segmentation. It consists of an
encoder and a decoder part, with skip connections exploited
to preserve spatial information and alleviate the vanishing
gradients issue that occurs in ANNs during the BP process.
In Fig. 10, a typical U-Net structure is depicted, processing an
image of sizeNe = W×L, usingNf features on the first layer,
with zero-padded Nc × Nc convolutional filters, followed
by a ReLU activation function and a 2-factor downsampling
(max pooling) and upsampling. The number of encoder and
decoder layers depends on the image size and the absence
of zero-padding would lead to a smaller size output image.
The U-Net architecture has been used as a fundamental part
in numerous DL EIT inverse solvers, both in post-image
processing and model-based learning.

The U-Net-based Beltrami-Net is a modified approach
based on the deep D-Bar, presented in [59] for a-EIT. The
Beltrami-Net exploits image training data and a Beltrami
equation without using any a-priori knowledge of the
boundary shape. The method is evaluated on numerous
chest-shaped phantoms and is compared to traditional D-Bar
and TV regularization. Another early CNN application in EIT
is described in [209], where a network consisting of two con-
volution and pooling stages, followed by two fully-connected
(FC) layers, is trained using a large simulated dataset with

10-fold cross-validation. In [210] (2019), a simple cascaded
encoder-decoder CNN structure was used to process the
reshaped measurement vector as a matrix-image (also called
electrical impedance or voltage feature map-VFM), resulting
in sufficient quality images. Although [209] and [210] use
CNNs, the corresponding learning approaches could also
be classified as direct-data learning (see subsection VII-A),
as they both actually feed the CNNs with measurement data
in an array image form.

In [211], a U-Net CNN driven by a measurement input
vector FC layer reconstructs EIT images for cell culture
and drug monitoring using a micro-electrode sensor. The FC
layer derives a linear naive image reconstruction that is then
fed to the U-Net CNN for further processing. In addition,
the BE-SOM approach (see subsection III-I) is employed
in [60] to derive EIT images using the dominant induced
contrast current components. These images serve as inputs
to a U-Net CNN structure, effectively learning the non-linear
mapping between the inputs and the ground truth images. A
comparative study involving the deep D-Bar, a simple LeNet
CNN implementation, an FC-Unet implementation, a sparsity
regularization method and the conventional D-Bar method
under quantitative benchmarks is detailed in [75]. Various
numerical examples demonstrate that CNN-based techniques
perform better in low measurement noise cases, while
sparsity regularization, despite its lower spatial resolution,
appears to be more noise-robust. However, it is remarked
that the performance of CNN-based techniques is strongly
affected by the training data and parameters.

In [212], a 33-layer V Dense Net (VD-Net) architecture
is proposed for electrical resistance tomography (ERT),
inspired by the U-Net. The reconstruction process involves
5 fully-connected (FC) layers that generate an initial image,
which is then used as input for the VD-Net. The VD-Net
structure is comprised of 4 dense blocks responsible for fea-
ture extraction and deep imaging. Each dense block includes
downsampling (encoder part) or upsampling (decoder part)
along with 2D convolutional layers. Furthermore, a skip
‘‘residual’’ connection is established from the FC-layer to the
VD-Net output. The dense connections in the VD-Net archi-
tecture further contribute to the improvement of vanishing
gradients, non-linearity and imaging sparsity, compared to the
state-of-the-art U-Net.

Finally, in [213], a V2A-Net (attention-based deep CNN)
framework is developed. The first step of the reconstruction
process flow includes an initial image estimation according
to (30) with a sigmoid function activation, where the
hyperparameter and the regularization scheme are trainable.
The initial image is fed to a backbone V2A-Net, comprised
of 2 V-shaped similar structure modules: the encoder and the
decoder. Squeeze-and-excitation (SE) and coordinate-spatial
attention skip connections are established between the 2mod-
ules, resulting in a channel and a position attention tensor,
respectively. The SE contributes to obtaining the conductivity
distribution, while the coordinate-spatial attention loops
enhance the shape information. As a result, the V2A-Net
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FIGURE 10. Demonstration of a general U-Net CNN architecture, including the encoding, the decoding and the skip
functions. Zero-padding for the 2D convolution filters and 2-factor max pooling and upsampling are shown.

presented better inclusion boundary shape preservation in the
EIT images, with a more accurate estimation of even low
impedance perturbations and significantly reduced complex-
ity, compared to dense CNN and U-Net type architectures.
Therefore, the V2A-Net showed improvement both in spatial
and temporal imaging performance.

C. MODEL-BASED LEARNING
In this learning category, in addition to measurement data
and roughly reconstructed EIT images, the DL structure
incorporates physics-related information, such as the forward
model [64], [214], [215]. This information may encompass
specific geometry or electrode structures, the electric field,
or voltage distribution. The described integration ensures
that the reconstructed images remain consistent with the
measurement data, thereby enhancing the DL approach’s
generalization capabilities.

One of the first model-based learning applications in EIT
was proposed in [61] (2019). This work is an extension of the
BE-SOM method and the dominant currents approach [60].
Instead of the U-Net based post-processing of the dominant
current-derived images performed in [60] and [61] exploits a
cascaded end-to-end CNN, where the dominant currents J̄̄J̄Jdetd
and the electric fields Ē̄ĒE td (a-priori derived from (47), (49)
and (50), details are provided in III-I) are used as inputs. The
proposed architecture consists of a number of S stages that
regress the currents J̄̄J̄Jd from the corresponding dominant ones
J̄̄J̄Jdetd in the following way:

J̄̄J̄J lsd =
¯̄F¯̄F¯̄F
{

¯̄M¯̄M¯̄M s

[
¯̄F¯̄F¯̄F∗

(
J̄̄J̄Jd − J̄̄J̄Jdetd

)]}
+ J̄̄J̄Jdetd , (114)

where J̄̄J̄J lsd ∈ R2Ne×1 is the current label and ¯̄M¯̄M¯̄M s ∈ Rks×ks

is a block-diagonal matrix that denotes the ks-component

FIGURE 11. Simplified representation of the cascaded end-to-end CNN
architecture used in [61].

low-frequency mask (for the rest of notations see III-I).
At each stage s, a least square loss function is evaluated for
the current labels. Then, a weighted linear combination of
them is used as the final loss function. The output estimated
currents J̄̄J̄Jod are used to compute the conductivity through the
polarization tensor ξξξ . The aforementioned induced currents
learning scheme has been demonstrated to outperform both
the BE-SOM and the dominant current scheme in preserving
the shape of inclusions, a crucial aspect for lung imaging
applications [61]. A visual demonstration of this process is
shown in Fig. 11.

A year later (2020), a Landweber-based DL approach was
proposed in [216] for resistive tomography. The Landweber
iterative reconstruction network (LIRN) consists of several
layers, with the measurements, the Jacobian matrix and a
naive EIT reconstruction image as inputs. Each layer consists
of A) an FC-Net that ‘‘learns’’ the relaxation vector α ∈

R1×Ne through the operation ααακJJJT (JJJσ κ−1
− VVV ) (κ-th layer,

see also (31)) followed by batch normalization and B) a 4-
layer CNN, where the first 2 layers perform feature extraction
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and the last 2 layers perform image reconstruction. The
outputs of the two subnets are subtracted from the previous
LIRN layer output to estimate σ κ , which serves as input to
the next layer. The LIRN framework was evaluated using a
circular phantom tank containing salty water and nylon bars
[216]. It exhibited superior performance in cases involving 3
or more inclusions compared to the VD-Net (see the previous
subsection). This is attributed to the fact that LIRN reduces
its reliance on training data and demonstrates increased
robustness to measurement noise.

Another model-based DL approach [217] exploits the
VFM concept (see the previous subsection), where a
regularization-guided deep imaging framework is developed.
In particular, the acquired VFM is fed into a 5-block hier-
archical feature extraction structure. Each block integrates a
simple l2-norm regularization network with ReLU activation
alongside a CNN (encoder-decoder) that functions as a hybrid
regularizer (see also subsection III-F), with their outputs
concatenated, followed by a convolutional stage with batch
normalization and max pooling. The final block’s output is
directed to a 2 FC layer network for the reconstruction of the
final image. Experimental validation on phantoms showcased
that the incorporation of high-level a-priori information
aids in extracting spatial information that often remains
unattainable through traditional or direct-data learning EIT
reconstruction methods.

The FISTA-Net was proposed in [215] as a CNN-based
framework for medical imaging inverse problems. Its overall
architecture consists of multiple cascaded stages, with each
one including a gradient descent and a proximal mapping
module. Within each stage, a 2-step update is performed.
The FISTA-Net builds upon the FISTA approach (see
subsection III-E and [136] for further information), by incor-
porating the ability to update the gradient matrix during
each iteration and to learn non-linear thresholding [215] (see
Fig. 12). Evaluation of the FISTA-Net in multi-frequency
EIT was conducted in [218] using an in-vitro human
breast cancer cell pellet as a case study (24000 training
samples). Compared to traditional regularization and the U-
Net schemes, the FISTA-Net showed improved quantitative
performance metrics in all the test cases.

Another model-based DL approach was developed in [218]
and [219], based on the ADMMmethod (see subsection III-E
and [25] for details). In particular, [219] extends [211] to a
3D multifrequency EIT measurement process. The approach
uses a U-Net CNN to acquire a group index encoder and
ADMM-based group sparsity regularization. This framework
is enhanced in [218], where the multiple measurement
vector ADMM (MMV-ADMM) network is applied in
multifrequency EIT. The MMV-ADMM-Net incorporates a
number of cascaded parameter updating blocks, including a
gradient descent module, a spatial self-attentionmodule and a
convolutional long short-term memory (LSTM) module (see
Fig. 13). These modules generalize the shrinkage operator
to reveal the correlation between different measurement
frequencies. Furthermore, the parameters are shared among

FIGURE 12. Simplified representation of the FISTA-Net architecture [215].
Each iteration step consists of a gradient descent and a proximal mapping
module that are implemented using cascaded 2D-convolution filtering
and ReLU activation.

FIGURE 13. Simplified representation of the MMV-ADMM-Net
architecture [218]. Each iteration step implements the corresponding
ADMM parameter updates.

the update steps and across all the blocks [218]. The MMV-
ADMM-Net approach is evaluated on experimental datasets
as well as on an in-vitro human chest cancerous cell, resulting
in clear images with accurate shapes. Comparison with
the traditional ADMM and the FISTA-Net images is also
performed, indicating improved quantitative metric values.

In [220], an impedance-optical dual-modal cell imaging
approach that utilizes learning-based information fusion is
proposed. A microscopic guidance image acquired from an
impedance-optical sensor is properly processed to derive
a mask image. The mask image and the EIT voltage
measurements feed a trained DL model to enhance EIT
image reconstruction, called multi-scale feature cross fusion
network (MSFCF-Net). The MSFCF-Net includes two
backbone networks (BN) [221] that extract latent features
from the measurements and the mask image, respectively.
Each BN consists of multiple residual blocks that include
convolutional filter layers with Leaky ReLU activation [222].
The extracted feature maps from each block are fed to
dual-modal feature fusion modules (DMFF) [223] that keep
the main spatial information by using efficient convolutional
block attention mechanisms [224]. A number of multi-scale
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FIGURE 14. Simplified representation of the MSFCF-Net
architecture [220].

feature fusion modules (MSFF) integrate the feature maps
resulting from the DMFFs to reconstruct the final EIT image.
The MSFCF-Net was evaluated on phantoms containing
cell spheroids and quantitatively compared with Tikhonov
regularization, SA-SBL (see section VI) and FC-Unet. It was
shown to outperform them under various inclusion cases and
noise levels after 90 epochs of training over approximately
31000 samples. Its high-level architecture is demonstrated in
Fig. 14.

Furthermore, in [225], a structure-aware dual-branch
(SADB) network for 3D cell imaging was developed.
The SADB-Net is comprised of an FC-UNet (see subsec-
tion VII-B and [211]) for binary mask generation and two
feature extractors that are fed from the voltage measurements
and the binary mask, respectively, followed by 2 fully-
connected layers to reconstruct the EIT images. Each feature
extractor is composed of convolution filter stages followed
by batch normalization layers with ReLU activation and a
max-pooling layer at their output. As in [220], this approach
utilizes two branches to separate the absolute conductivity
value and shape estimation, respectively, fusing the feature
information to produce high spatial resolution and accurate
EIT cell images. However, while [220] is a dual-modal
approach exploiting both EIT and microscopy, [225] gen-
erates the structural mask using only EIT measurements.
Finally, the SADB-Net was compared with Tikhonov and TV
regularization, SA-SBL and the FC-Unet scheme, showing
improved relative image error and imaging speed [225].
Graph neural networks (GNNs) have recently been intro-

duced in the field of inverse scattering problems, proving
to be a valuable tool. In particular, unlike conventional
CNNs, GNNs can be tailored to address problems in which
the discretization of the reconstruction domain is non-
uniform, such as those involving finite element method
(FEM) discretization, without the need for interpolation

and embeddings. They can be classified into recurrent
GNNs, convolutional GNNs, graph autoencoders and spatial-
temporal GNNs [226].
GNNs rely on a graph representation of a discretized

domain, where AAA ∈ RNe×Ne serves as its adjacency matrix,
encapsulating weighted relationships between nodes in the
graph. By adding the unit matrix to the adjacency one, the
matrix Ã̃ÃA = AAA + III is derived. The diagonal degree matrix
D̃̃D̃D ∈ RNe×Ne is also completed as D̃ii =

∑Ne
j=1 Ãij. According

to the Kipf and Welling formula, which is commonly
used in convolutional GNNs, each layer can be derived as
follows [227]:

XXX i+1
= g

(
D̃̃D̃D−

1
2 Ã̃ÃAD̃̃D̃D−

1
2XXX iWWW i

)
, (115)

where XXX i ∈ RNe×Nfi and XXX i+1
∈ RNe×Nf (i+1) denote the input

features of the i-th and i + 1-th layers respectively, Nfi the
number of features at the i-th layer,WWW i

∈ RNf (i−1)×Nfi a matrix
that contains the weights of the i-th layer and g a non-linear
activation function. The expression D̃̃D̃D−

1
2 Ã̃ÃAD̃̃D̃D−

1
2 represents a

graph filter.
GNNs are applied in model-based DL for non-linear

inverse problems, including EIT. In the work presented
in [64], a convolutional GNN architecture based on a
Newton-type method was employed for absolute EIT. This
approach utilized a 10 kHz current signal alongside a
trigonometric current pattern. The experimental investiga-
tions were carried out using phantom tank data acquired
via the ACT3 [228] and KIT4 [229] EIT systems. Notably,
the results demonstrated significant enhancements in spatial
resolution and shape detection in comparison to both the
Levenberg-Marquardt and TV methods. Similar improve-
ments were observed in comparison to the residual-based
GNN (GResNet) [230]. In Fig. 15, a simplified representation
of the architectures of the GNNs, including the GCNM and
GResNet, adapted for EIT is presented. Both architectures
are fed with a reconstructed EIT image obtained using a
naive GN approach. However, in the GCNM, each update is
performed through a particularly trained graph convolutional
block, considering A and following the concatenation of the
background conductivity σκ and conductivity perturbation
δσκ . On the other hand, within the GResNet architecture,
each graph convolutional block takes the previously updated
conductivity as input, which is concatenated with the output
of the corresponding block. Notably, the graph convolutional
block structure is consistent across both architectures, with
each layer following the formulation as given by (115).

An application of GNNs in multifrequency cell imaging
EIT can be found in [63]. This particular framework
employs a combination of a raw EIT image alongside a
binary mask as inputs, employed collectively to guide the
ultimate reconstruction process. The core architecture of
the GNN is composed of several blocks, each of which
comprises a graph convolutional component as well as a
gated temporal resolution phase. The latter makes use of two
parallel dilated convolution layers [231]. This design permits
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FIGURE 15. Basic convolutional GNN architectures. i) GCNM. ii) GResNet.
iii) Convolutional block, same for GCNM, GResNet.

effective learning of both spatial and frequency correlations,
thereby enhancing the model’s imaging performance. The
aforementioned framework was tested on the Edinburgh
mfEIT dataset [218] and compared to the MMV-ADMM-
Net one, outperforming it under various measurement noise
levels. The GNNs were also exploited to extend the U-
Net framework, by integrating K-means cluster pooling and
clone cluster unpooling instead of the traditional CNN max-
pooling process [232]. For a more comprehensive insight
into the utilization of GNNs in various biomedical imaging
applications, an extensive review is available in [233].
Notwithstanding the considerable strides witnessed in the

domain of DL methodologies applied to EIT, the absence
of extensive medical EIT datasets gives rise to significant
challenges in the implementation of the training process.
In response to this issue, the concept of DIP was introduced
in [66] to tackle image reconstruction dilemmas. DIP offers a
solution to the corresponding inverse problems without the
necessity of extensive training data. Rather than training a
given NN with measurement data, the optimization of its
parameters is achieved through inherent back-propagation
mechanisms.

DIP was applied in EIT simulation and experimental data
in [65]. A random noise pixelized image input zzz ∈ RW×L is
set, while imposing xxx = fθ (zzz) (fθ a given NN with weights
θ ). Then, the denoised pixelized image xxx ∈ RW×L is mapped
to a finite element discretized domain in order to obtain the
conductivity: σ = P(xxx), σ ∈ RNe×1. Therefore, the following
optimization problem is defined:

F(θ ) = ∥UUU (P(fθ (zzz))) −VVV∥
2
2 , (116)

θ∗ = argmin
θ∈RNw

{
F(θ )

}
, (117)

where P is the (linear) mapping operator,Nw the total number
of the NN’s parameters. The process of reconstruction begins
with an initial estimation of σ and UUU based on zzz, facilitated
through an initially parameterized NN. Subsequently, the
cost function F is evaluated and the weights θ of the NN
are iteratively updated using the back-propagation method in
conjunction with the Adam optimizer, alongside the updates
to σ . This process is repeated for a predefined number of
iterations. In [65], a 5-layer deep U-Net NN architecture
was employed, featuring 2 skip connections, LeakyReLU
activation in the hidden layers and sigmoid activation at the
output layer. A parametric study of the imaging performance
with varying the learning rate and the U-Net skip connections
was also performed. The preliminary results suggested that
DIP can be a promising approach for unsupervised DL EIT
image reconstruction; however, it still needs to be evaluated
on more experimental and clinical data. The main process
flow of the DIP approach is depicted in Fig. 16.
Finally, another untrained NN prior-based approach was

developed in [234], where a regularized shallow image prior
is proposed for EIT. A 3-layer multi-layer Perceptron (MLP)
NN is used along with a TV regularization term for both 2D
and 3D EIT on thoracic simulated domains and experimental
phantom cases. The results were compared with Laplace
regularization scheme combined with untrained MLP, con-
ventional TV and Tikhonov (Laplace prior) regularization,
demonstrating major improvements and artifact removal.

Despite significant strides in the integration of EIT and
DL, practical applications in real-world scenarios are still
hindered by various challenges. A primary challenge lies in
the insufficiency of clinical EIT data essential for the training
process, a limitation exacerbated by the relatively restricted
use of EIT in clinical contexts [65], [74]. Efforts to overcome
this challenge have begun, with notable strides made in the
research on DIP, as discussed earlier. Another critical concern
is the issue of generalization, wherein many approaches
are developed and assessed on a constrained set of subject
cases, like specific tissue cells or structures, potentially
leading to overfitting of network parameters. To address
this, it is imperative to leverage properly structured and
diverse datasets, employing efficient networks that enhance
adaptability to a broader range of scenarios. Additionally,
guarding against overfitting through regularization tech-
niques and robust validation on diverse datasets is essential.
Furthermore, the potential impact of domain shifts, changes
in imaging environments, or equipment variations should be
considered to enhance themodels’ robustness across different
medical scenarios. In summary, addressing these challenges
will play a pivotal role in the successful transfer of EIT into
widespread and effective clinical applications.

VIII. DISCUSSION
EIT has undoubtedly presented significant recent devel-
opments in image reconstruction techniques, especially
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FIGURE 16. Schematic description of the deep image prior for EIT image
reconstruction.

since the introduction and incorporation of advanced DL
frameworks. However, many considerations have to be made
before transferring such developments to the EIT application
fields, regarding their feasibility and limitations.

In particular, traditional regularization methods could still
be used in simpler anatomical, geophysical, or material
structures [127]. Nevertheless, applications that involve
more complex-shaped structures or numerous phases of
conductivity changes should be treated with frameworks that
consider the boundary changes and are robust in preserving
the inclusions’ shapes under various setup and measurement
cases. Although shape-driven non-linear algorithms have
demonstrated notable performance in this regard, they could
become unstable under different SUT cases, involving many
parameters whose initialization might significantly affect
the imaging performance [235]. Noise robustness and low
speed are also limitations raised by shape-driven approaches,
especially in real-time lung and perfusion monitoring.
Considering that the real-time lung monitoring trend extends
to simultaneously evaluating clinical disorders such as lung
recruitment or collapse, derecruitment or overdistention and
cardiac function indicators [203], the introduction of deep
learning schemes is essential for clinical investigations.

As mentioned in the previous section, the DL frameworks
themselves are characterized by a lack of generalization and
need a large amount of datasets and computational resources
to be properly trained. Therefore, specificDL schemes should
be utilized on particular applications, according to their
strengths. For example, the fd-EIT based MMV-ADMM-
Net [218] and MSFCF-Net [220] frameworks can be applied
in ex-vivo cases (biopsies for malignant tissue detection
[236]) or material sample investigation. The dense-net (VD-
Net and V2A-Net) and Beltrami-Net frameworks can be
transferred to thoracic impedance imaging applications since
they demonstrate sufficient performance in boundary shape
preservation. The GNNs and DIP, which are still in an early
development stage in the context of EIT, are promising
frameworks that could be applied in areas with limited
open-source measurement data, including geophysical and
industrial applications. Finally, further research in the com-
plexity reduction of the reconstruction process is crucial
to increase the temporal resolution and the incorporation

of 3D schemes in practical aspects of EIT. Both features
are proven to provide valuable structural and functional
information of the SUT that cannot be detected with common
two-dimensional or low frame rate EIT imaging.

IX. CONCLUSION
This paper provides a comprehensive review of both con-
ventional and contemporary approaches to inverse problems
in EIT. Each methodology is elucidated with a concise
tutorial exposition, covering their fundamental mathematical
formulation, algorithmic processes, applicable scenarios and
associated strengths and limitations. The categorization of
these approaches is based on their mathematical underpin-
nings, with particular attention directed towards the latest
advancements and their significant contributions to the field.
In summary, the major challenges posed by the inverse
problem in EIT, primarily attributable to the soft field effect
and limited data availability, have been effectively addressed
through the introduction of advanced image reconstruction
methodologies. These approaches are not solely reliant on
regression analysis of measurement data; they also capitalize
on pertinent information regarding the SUT’s structure, the
electric fields and the spatial characteristics of the inclusions
in terms of their positions and shapes. Consequently, recent
advancements in EIT research have yielded significant
enhancements in the quality of imaging, encompassing both
spatial and temporal dimensions. This progress is paving the
way for broader applications of EIT, in both the medical and
industrial fields.
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